

Graphical and Measurement Tools

Copyright © 2020

All rights reserved. Do not reproduce.

www.airacad.com

User Agreement and Copyright Information

- This recording and the accompanying guide contain copyrighted and proprietary content of Air Academy Associates, LLC. You are authorized to use this material for personal reference, but not for any commercial use. You may not modify, license, sub-license, distribute, copy, translate or create derivative works based on this guide, in part or in whole, without permission from Air Academy Associates.
- Other copyright information:
 - Six Sigma is a service mark of Motorola, Inc. Microsoft[®] and Excel[®] are registered trademarks of Microsoft Corporation in the United States and in other territories.
 - SPC XL[™] and DOE Pro XL[™] are copyright SigmaZone.com and Air Academy Associates, LLC. You may not copy, modify, distribute, display, license, reproduce, sell or use commercially any screen shots or any component contained therein without the express written permission of SigmaZone.com and Air Academy Associates, LLC. All rights reserved. SigmaZone.com may be contacted at <u>www.SigmaZone.com</u>. Air Academy Associates may be contacted at <u>www.airacad.com</u>.

Graphical and Measurement Tools

- In this session, we will discuss:
 - Why Collect Data
 - Attribute and Variables Data
 - Graphical Presentation
 - Pareto Chart Attribute data
 - Histogram Variables data
 - Run Chart Both types
 - Box Plots Both types
 - Scatter plot Typically variables data
 - Measures (metrics) Presentation
 - Variables data Summary statistics
 - Attribute data Yield, first pass yield (FPY), rolled throughput yield (RTY), and defects per unit (dpu)
 - Variables data Sigma level, C_p, C_{pk}, and defects per million (dpm)
 - Summary

- A list of supplemental material and additional practice/review questions for this session are provided at the end of this presentation
- You can download the pdf of this presentation, along with any supporting data files, on the site where you are accessing this course

Importance of Measurement

- Why collect data in Lean Six Sigma (LSS) and Design for Six Sigma (DFSS)?
 - To gather the facts for good decision making
 - Because perception and intuition are not always reality
 - To identify/verify problem areas and bottlenecks
 - To characterize our processes
 - To baseline the process
 - As an indicator of process performance

"To measure it, is to know it."

"If you cannot measure it, you cannot improve it."

"When you can *measure* what you are speaking about, and express it in numbers, you *know* something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of *science*."

Lord Kelvin 1824 - 1907

٠

experience both in our LSS and DFSS work. Given the choice, which type of data do you think is preferred and why?

• We will discuss methods to deal with both types of data, because we will likely

3

Attribute and Variables Data

Attribute Data

- Also called categorical data
- No direct measurement is made
- The presence or absence of something is recorded
- We classify or count a feature or characteristic of the product or process
- Examples:
 - Documentation errors per week
 - Test results (pass/fail, good/bad) out of an audit of 20 items
 - Presence or Absence of a date code stamp per product type

Variables Data

- Also called *continuous* or *measurement* data
- Actual measured values are recorded
- Data can assume a range of values on a continuous scale
- Examples:
 - Wait time in hours
 - Cost in dollars
 - Temperatures in degrees Fahrenheit or Celsius

Measuring the Process

		Graph	Metric, Measure
of Data	Variables (Measured)	 Histogram Run Chart Box Plot Scatter Plot Control Chart 	 Mean, Standard deviation Defects per million (dpm) Sigma level Sigma capability Cp and / or Cpk
Type	Attribute (Counted)	 Pareto Diagram Run Chart Box Plot Control Chart 	 First pass yield (FPY) % "good" (or "bad") Defects per unit (dpu) Defects per million opportunities (dpmo) Sigma capability Defects per million (dpm)

Type of Summary

Goal: Turn data into information

Attribute Data: Pareto Example

Patient Fall Location Data

Data

Location of Patient Falls	Count (frequency)	Proportion
Hallway	21	0.09
Patient Room	164	0.74
Radiology	5	0.02
ER	13	0.06
Rehab area	9	0.04
ICU	7	0.03
Lab	3	0.01
	222	1.00

Location of Falls and Frequency of Occurrence

Information

Creating Pareto Charts with SPC XL

SPC XL > Analysis Diagrams > Pareto Chart

For video instruction on generating pareto charts, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

Sort Order Descending Ascending		Bar Type © 2-D Bars © 2-D Bars	w Cum Line w/o Cum Line	Gap Width
Save settings as o Use default settin	default gs and don'	C 3-D Bars	w/o Cum Line form again	# Groups
Help	Cancel	<< Back	Next >>	Finish

Options window for chart details

Pareto Chart with a cumulative line shown

A Pareto Report is produced along with the Pareto Chart

Group	Count	% of Total
Patient Room	164	73.9%
Hallway	21	9.5%
ER	13	5.9%
Rehab area	9	4.1%
ICU	7	3.2%
Radiology	5	2.3%
Lab	3	1.4%

Other Examples of Pareto Charts

Pareto of Procedure Type by Cost

Pareto of Surgical Setup Errors by Time Lost Due to the Error

Variables Data: Histogram Example

DATA

Graphical and Measurement Tools – data files

Data

								-	
40	38	52	51	50	43	39	63	30	39
54	48	38	46	49	39	39	55	41	40
53	49	45	60	55	36	35	48	33	50
43	41	47	44	39	34	43	43	47	48
45	42	44	41	43	36	67	37	46	56

Information:

Histogram describes the distribution of the data: shape, location and spread!

Histogram of MRI Scan Times, for a particular type of scan

Creating Histograms with SPC XL

For video instruction on generating histogram charts, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

SPC XL > Analysis Diagrams > Histogram

File	Home Ir	nsert Pag	e Layout	Formulas	Data	Review	View D	eveloper	Add-Ins	Acrobat	SigmaZone
Control charts *	Analysis Diagrams • T	MS. Pro Inalysis Fools + Qu	A (gage ci blem Id Ti ality Tools	apability) * ools * ; *	Genera Discrete Continu	te Rando e Distribu uous Distr	m #s ▼ tions ▼ ributions ▼	OP1 OP2 Options	L About SPC XL		
	Wizard					XL 2010					
	💦 Diagra	m Selection	Wizard	MRI	Scan Ti	mes					
	Analysis										
- 4	🔥 Histog	ram		C		D	E	F	(3	H I
1	Cpk										
3	🔀 Scatter	r Plot									
4	Pareto	Chart									
5	Summa	ary Stats (Do	ot Plot)	-							
7	🛊 🛊 🛛 Box Plo	ot									
8	48										
9	49										
10	41										

Options window for chart details

Goodness of Fit Test

• The Kolmogorov-Smirnov (KS) Test is a "goodness of fit" test. The test result is displayed as a p-value (probability value).

H₀: The distribution is normally distributed

H₁: The distribution is not normally distributed

- Rule of Thumb:
 - If the p-value < 0.05, then conclude that the normal distribution <u>IS NOT</u> a good fit for your data (H₁).
 - If p-value > 0.05, then we fail to reject H_0 (the data could be normally distributed).

Common Histogram Shapes

Classic "bell-shaped" curve

Skewed distribution

Rectangular (uniform) distribution

Exponential distribution

Bi-modal distribution

Attribute and Variables Data: Run Chart

Run Chart for Time Between Breakdowns on a machine

Creating Run Charts with SPC XL

For video instruction on generating run charts, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

SPC XL > Quality Tools > Run Chart

Graphical and Measurement Tools – data files

Data can be stored in separate columns. Highlighting 2 or more columns will overlay the run charts.

Data can be stored in one column. This may be a nice visual way to show "before project" and "after project" results.

Box Plots

- Another method for graphically depicting variables data.
- Especially useful when comparing 2 or more sets of data (side by side) or when the data sets are small.
- Breaks up data into quartiles (fourths).
- Box plots show the data set's location and spread but not really the shape of the data!

Creating Box Plots with SPC XL

For video instruction on generating box plots, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

SPC XL > Analysis Diagrams > Box Plot

Scatter Plot Example

Data: Bivariate Data (Vehicle Weight vs Gas Mileage)

Observation	Weight (Ibs)	Mileage (mpg)
1	3000	18
2	2800	21
3	2100	32
4	2900	17
5	2400	31
6	3300	14
7	2700	21
8	3500	12
9	2500	23
10	3200	14

Graphical and Measurement Tools – data files

Creating Scatter Plots with SPC XL

For video instruction on generating scatter plots, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

SPC XL > Analysis Diagrams > Scatter Plot

File	Home Ins	ert Page Layout	Formulas	Data Revi	ew View	Help	ACROBAT	SigmaZone
Control charts •	Analysis Anal Diagrams - Too Wizard	MSA (gage cap Problem Id Too lysis Quality Tools ~	ability) * Ger Is * Dis Cor XL 2010	nerate Random # crete Distribution ntinuous Distribu	s * or ns * Optio tions *	ns About SPC XL		
A2	🔥 Diagram S	election Wizard	weight					
1 2 w 3 4 5 6 7	Analysis Histogram Cpk Scatter Plo Pareto Cha Summary S	u. It Stats (Dot Plot)	E	F	G	H	I	J

SPC XL > Analysis Tools > Correlation Matrix

Fi	le Home	Insert	Page Layout	Formulas	Data Revie	w View	Help	ACROBAT	SigmaZone
Cor cha	trol Analysis rts - Diagrams -	Analysis Tools *	MSA (gage capal Problem Id Tools Quality Tools *	oility) + Gener + Discre Conti	ate Random # ete Distribution nuous Distribut	s * Optio	ns About SPC XL		
		fb) M	ultiple Regression.						
A2	~								
		1† co	orrelation Matrix			0		1.1.1	
1	A	ភ្នាំ t1	Test Matrix (Mean).		r	G	п		J
2	weight mi	BB Pa	aired t Test Matrix						
3	3000	A F	Test Matrix (StdDe	0					
4	2800	YIO	dependence Test h	Antriv					
5	2100	~	dependence rest in	TOUTAIN					
7	2400								
8	3300	9*9 Te	est of Proportions						
9	2700	1	Way ANOVA						
10	3500								
11	2500	👗 Co	onfidence Interval						
12	3200	B S	ample size	, -					

Hease seeur une orientation or y	our data.	
- Example of data in Columns -		
Question A Question B	Column heade non-numeric	er must be
2 4 3 5	<< Data in C	olumns
4 4		
 Example of data in Rows 		_
	Row headers m non-numeric	ust be
	Question A	4234
	0	4 4 5 4
Data in Rows >>	Question B	

The table shown below displays the pairwise correlation coefficient.

Corre	Correlation Matrix							
	weight	mileage						
weight	1.0	-0.958681						
mileage		1.0						
	Summary							
Mean	2840.0	20.3						
StDev	432.563	6.8646						
Count	10	10						

Vehicle Weight

vs Gas Mileage

Correlation vs Causality

A plot of the population of Oldenburg, Germany at the end of each year against the number of storks observed in that year, 1930-1936.

Source: "Statistics for Experimenters" by Box, Hunter, and Hunter. (1978)

Measuring the Process

		Graph	Metric, Measure
Type of Data	Variables (Measured)	 Histogram Run Chart Box Plot Scatter Plot Control Chart 	 Mean, Standard deviation Defects per million (dpm) Sigma level Sigma capability Cp and / or Cpk
	Attribute (Counted)	 Pareto Diagram Run Chart Box Plot Control Chart 	 First pass yield (FPY) % "good" (or "bad") Defects per unit (dpu) Defects per million opportunities (dpmo) Sigma capability Defects per million (dpm)

Type of Summary

Goal: Turn data into information

Summarizing the Current State with Measures of Quality (Attribute Data)

Unit: any part, item, component, subassembly or complete product, service, or transaction for which a quality/performance measure is desired. This must be specifically defined.

defects per unit (dpu) =

Total # of defects observed from start to finish over all units started Total # of units started (n)

Measuring Quality for Attribute Data with SPC XL

SPC XL > Quality Tools > Product Capability

- Record pertinent information in your spreadsheet:
 - Number of units tested or inspected
 - Number of defects found
 - Number of opportunities per unit (optional)
 - Text description (optional)

File	e Home	e Insert	: Page Layou	t Formulas	Data	Review	View	Help ACR(DBAT Sig	maZone
Cont	trol Analysis ts = Diagrams	Analysis • Tools •	MSA (gage capa Problem Id Tool Quality Tools +	ability) + Generate Is + Discrete Continu	e Random Distributio ous Distrik	#s * ons * outions *	Options About	t		
			🐴 Main Ef	fects Plot						
132	Ŧ									
	Α	В	-			E	F	G	Н	1
1	number of	3000	Unstac	k Columns						
2	defects	195	M Burgh							
4	lahel	docume	Kun Ch	art						
5	aber	docume	Cusum	Chart						
7			On Product	t Canability						
8			TI Produc	t Capability						
9										
10			TIMILA							
11			What what we	/- 3c Chart						
12			The Abai +/	- 35 Chal La						

Reference the cells where your data is stored

Graphical and

data files

Measurement Tools -

Product Summary Report									
				Total				Sigma	
Characteristic	Defects	Units	Opportunities	Opportunities	DPU	DPO	DPMO	Capability	
documents	195	3000	4	12000	0.06500	0.01625	16250.000	3.6382	
Total	195		0	12000		0.01625	16250.000	3.6382	

Attribute Data

Metrics

Summarizing the Current State with Metrics (Variables Data)

<u>Mean</u>:

(measure of location and center; average; balance point)

Median:

(another measure of center; used with highly skewed data; 50th percentile)

Process standard deviation:

(spread; variation)

$$\overline{\mathbf{y}} = \frac{\sum_{i=1}^{n} \mathbf{y}_{i}}{\mathbf{n}}$$
$$\overline{\mathbf{y}} = \frac{6+7+7+9+11+12+15}{7} = 9.57$$

Median = middle value = 9

$$S = \sqrt{\frac{\sum_{j=1}^{n} (y_j - \overline{y})^2}{n-1}}$$

$$=\sqrt{\frac{(6-9.57)^2 + (7-9.57)^2 + (7-9.57)^2 + (9-9.57)^2 + (11-9.57)^2 + (12-9.57)^2 + (15-9.57)^2}{6}}$$

= 3.26

Summary Statistics with SPC XL

 For video instruction on generating summary statistics, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

23

Summarizing the Current State with Measures of Quality (Variables Data)

• **Sigma Level** = number of standard deviations between the center of the process and the nearest specification limit

= minimum
$$\left(\frac{\mathbf{USL}-\overline{\mathbf{y}}}{\sigma}, \frac{\overline{\mathbf{y}}-\mathbf{LSL}}{\sigma}\right)$$

- C_p = a process potential index
 - = <u>specification width</u> process width

Note: The metrics Cp and Cpk assume that data is normally distributed

- C_{pk} = a process capability index (actual)
 - = proportion of natural tolerances (3σ) between the center of a process and the nearest spec

= minimum
$$\left(\frac{\mathbf{USL}-\mathbf{\bar{y}}}{3\sigma}, \frac{\mathbf{\bar{y}}-\mathbf{LSL}}{3\sigma}\right) = \frac{\sigma_{\mathsf{level}}}{3}$$

• **Defects per million (dpm):** The number of times (out of a million) that the process doesn't meet the specifications (requirements) (e.g., 20% is equivalent to 200,000 per million)

Cp Review (Variables Data)

C_p: Process Capability Potential (assumes a centered process)

 $C_p = \frac{USL - LSL}{6\sigma} = \frac{voice of the customer}{voice of the process}$

Interpreting the C_p value ("garage and the car")

25

Cpk Review (Variables Data)

C_{pk}: Process Capability (Actual) (takes into consideration a shift in the average)

$$C_{pk} = min\left(\frac{USL - \bar{y}}{3\sigma} \text{ or } \frac{\bar{y} - LSL}{3\sigma}\right) = \frac{\sigma_{level}}{3}$$

 $C_{pk} = C_p$ when the process is perfectly centered $C_{pk} < C_p$ when the process is not centered $C_{pk} = 0$ when the process mean is equal to one of the specification limits C_{pk} becomes negative when the process mean lies outside a specification limit

Capability Analysis with SPC XL

Suppose the time to process a claim follows a normal distribution with a mean of 7 days and a standard deviation of 2 days. The upper spec limit is 16 days, with a lower spec limit (imposed by management) of 4 days.

 For video instruction on generating a capability analysis, go to: <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>

can either

SPC XL > Analysis Diagrams > Cpk

Source data can be stored in a spreadsheet, or you can manually enter the mean and standard deviation.

File		Home Insert Page Layo	ut	Formulas	Data Rev	iew \	/iew D	Cpk Source Option	
Control charts *	Ana Diag Wiz	MSA (gage capz Problem Id Tool Analysis Tools * Quality Tools * ard Diagram Selection Wizard	bility) s *	 ✓ Generate Ra Discrete Dis Continuous 2010 	indom #s + tributions + Distributions +	OP1 OP2 Options	About SPC XL	Cpk Analysis The mean and standard deviation for a Cpk A come from a data range on a worksheet or v Which type of Cpk Analysis would you like?	Analysi ia man
1 2 3		Alysis Histogram Cpk Scatter Plot Pareto Chart	>	E	F	G	Н	Create Cpk from mean and standard de from data located on worksheet Create Cpk from Manual entry of mean standard deviation	eviatio
4 5 6	:::: 40	Summary Stats (Dot Plot) Box Plot						Help Cancel	Q

Input specs, mean, and standard deviation as shown

Graphical and Measurement Tools Summary

		Graph	Metric, Measure
Type of Data	Variables (Measured)	 Histogram Run Chart Box Plot Scatter Plot Control Chart 	 Mean, Standard deviation Defects per million (dpm) Sigma level Sigma capability Cp and / or Cpk
	Attribute (Counted)	 Pareto Diagram Run Chart Box Plot Control Chart 	 First pass yield (FPY) % "good" (or "bad") Defects per unit (dpu) Defects per million opportunities (dpmo) Sigma capability Defects per million (dpm)

Type of Summary

Goal: Turn data into information

Key Takeaways

• As a review techniques, stop the video and summarize the key learnings from this session. When you are finished, continue to the next page.

Key Takeaways

• Why collect data?

- For many reasons, but primarily to baseline current performance

Types of Data

- Attribute - counted, Variables - measured

• Graphical Presentation – a picture!!!

- Pareto Chart attribute data (separates the vital few from the trivial many!)
- Histogram variables data (provides a distribution shape, location, and spread
- Run Chart both types of data (data over time, shows trends and shifts
- Box Plot both types of data (compares location and spread differences across multiple groups)
- Scatter Plot variables data (investigates relationships between two variables)
- Measures (Metrics) Presentation capability! (current performance)
 - Variables Data Summary statistics (Mean, Median, Standard Deviation
 - Attribute Data Yield, FPY, RTY, and dpu (quality metrics!)
 - Variables Data Sigma level, C_p, C_{pk}, and dpm (quality metrics!)

Supplemental Material

- Suggested Reading:
 - Lean Six Sigma: A Tools Guide by Adams, Kiemele, Pollock and Quan (pp. 111 128, 223 227)
 - Basic Statistics Tools for Continuous Improvement by Kiemele, Schmidt and Berdine, 4th edition (Chapter 2)
 - Design for Six Sigma: The Tool Guide for Practitioners by Reagan and Kiemele (Section 7.15)
 - Air Academy's app: Six Sigma Quick Tools

- SPC XL[™] software training tutorials:
 - <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>
- The data files for this session can be downloaded from the site where you are accessing this course.

Additional Practice / Review Questions

Graphical and Measurement Tools – data files

- 1) In a review process, one of the critical measures of performance is the review cycle time. The goal is to complete the review below 72 hours. Baseline data was collected chronologically and is in the Review Cycle Time worksheet of the data files for this session. Display the data graphically and summarize the quality and capability of the process.
- 2) A customer service organization has been tracking the time its customers spend on hold along with the proportion of abandoned calls. Data for the past 15 days is located in the Hold Time Abandon Rate worksheet of the data files for this session. Is there a strong relationship between the average hold time and the abandon rate? Why or why not? Do you have any other observations or comments about the data?

We can help... Connect With Us

Remote Project Coaching

There are times when help outside your organization is needed. When that time comes, benefit from a partner that is experienced, tested, and trusted.

Expert coaching is one of the Top Five Best Practices for generating step change in project execution, as well as enhanced return on investment. We can work remotely with your organization to provide coaching support.

There's an app for that! Six Sigma Quick Tools

