Combinatorial Test Design Methodology

IEEE/Lockheed Martin Webinar March 13, 2014

> Dr. Mark J. Kiemele Air Academy Associates

Agenda

- Some Basic Definitions and Terms
- Various Approaches to Testing Multiple Factors
- Design of Experiments (DOE): a Modern Approach to Combinatorial Testing
- Testing in Very Large Design Spaces
- High Throughput Testing (All Pairs Testing)
- **Q&A**

Definition of a Process

Simplify, Perfect, Innovate

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Web-Based Application Process

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Combinatorial Test Terminology

- Y: Output, response variable, dependent variable
- X: Input, factor, independent variable (a measurable entity that is purposely changed during an experiment)
- **Level:** A unique value or choice of a factor (X)
- **Run:** An experimental test combination of the levels of the X's
- **Replication:** Doing or repeating an experimental combination
- **Effect:** The difference or impact on Y when changing X

Interaction: When the effect of one factor depends on the level of another factor

Performance Tuning Terminology

Factors/Inputs (X's)	Levels (Choices)	Performance/Outputs (Y's)
СРИ Туре	Itanium, Zeon	# home page loads/sec
CPU Speed	1 GHz, 2.5 GHz	Cont
RAM Amount	2 GB, 4 GB	Cost
HD Size	50 GB, 500 GB	
VM	J2EE, .NET	
OS	Windows, Linux	

Simplify, Perfect, Innovate Which factors are important? Which are not? Which combination of factor choices will maximize performance? How do you know for sure? Show me the data.

Page 5

Dilbert on Testing

Approaches to Testing Multiple Factors

- Traditional Approaches
 - One Factor at a Time (OFAT)
 - Oracle (Best Guess)
 - All possible combinations (full factorial)
- Modern Approach (Scientific Test and Analysis Techniques or STAT)
 - Statistically designed experiments (DOE)

 full factorial plus other orthogonal or
 nearly orthogonal designs, depending on
 the situation

OFAT (One Factor at a Time)

ACADEMY ASSOCIATES Simplify, Perfect,

Innovate

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Page 8

The Good and Bad about OFAT

- Good News
 - Simple
 - Intuitive
 - The way we were originally taught

Bad News

- Will not be able to estimate variable interaction effects
- Will not be able to generate prediction models and thus not be able to optimize performance

Oracle (Best Guess)

A = CPU Type (1=Itanium; 2=Xeon)

```
B = CPU Speed (1=1 GHz; 2=2.5 GHz)
```

C = RAM Amount (1=2 GB; 2=4 GB)

D = HD Size (1=50 GB; 2=500 GB)

E = VM (1=J2EE; 2=.NET)

Y = # home page loads/sec

Run	Α	В	С	D	Е	Y
1	1	2	1	1	1	5
2	1	1	1	1	1	6
3	2	2	1	1	1	5
4	2	1	1	1	2	6
5	1	2	2	2	2	7
6	1	1	2	2	2	8
7	2	2	2	2	2	10
8	2	1	2	2	1	11
			1			

Does factor D shift the average of Y?

10

©2014 Air Academy Associates, LLC. Do Not Reproduce.	Page
--	------

Evaluating the Effects of Variables on Y

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

Page 11

All Possible Combinations (Full Factorial)

		MATRIX	FORM		TREE DIAGRAM
	Example 1:	A	В		
	A (2 levels)	1	1		A Z
	B (2 levels)	1	2		
		2	1		
		2	2		2 2
		—	_		
					C 1
					в / 2
					1
	Example 2	Δ	в	C	$\sqrt{2}$
	A (3 levels)	1	1	1	1 / 3 < 1
	B (3 levels)	1	2	1	$A/$ $\geq \frac{2}{1}$
7	C (2 levels)	1	3	1	
/*		2	1	1	
		2	2	1	
		2	3	1	
		3	1	1	
		3	2	1	$\sqrt{3}$
		3	3	1	
		1	1	2	$\sqrt{1}$
		1	2	2	
		1	3	2	
		2	1	2	2
		2	2	2	$\sqrt{2}$ 1
		2	3	2	2
TES		3	1	2	
		3	2	2	
		3	3	2	

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Purposeful changes of the inputs (factors) in order to observe corresponding changes in the output (response).

<u>Air</u> <u>Academy</u> <u>Associate</u>

Famous Quote

"All experiments (tests) are designed experiments; some are poorly designed, some are well designed."

George Box (1919-2013), Professor of Statistics, DOE Guru

Simplify, Perfect, Innovate

Page 14

Innovate

The Set of All Possible Test Design Methodologies (Combinatorial Tests)

One Factor At a Time (OFAT)

The Set of All Possible Test Design Methodologies (Combinatorial Tests)

One Factor At a Time (OFAT)

> Best Guess (Oracle)

AIR ACADEMY ASSOCIATES

The Set of All Possible Test Design Methodologies (Combinatorial Tests)

One Factor At a Time (OFAT)

> Best Guess (Oracle)

Equivalence Partitioning (EP)

Simplify, Perfect, Innovate

©2014 Air Academy Associates, LLC. Do Not Reproduce.

The Set of All Possible Test Design Methodologies (Combinatorial Tests)

One Factor At a Time (OFAT)

Boundary Value Analysis (BVA)

Best Guess (Oracle)

Equivalence Partitioning (EP)

Simplify, Perfect, Innovate

©2014 Air Academy Associates, LLC. Do Not Reproduce.

The Set of All Possible Test Design Methodologies (Combinatorial Tests)

One Factor At a Time (OFAT)

Boundary Value Analysis (BVA)

Best Guess (Oracle)

Equivalence Partitioning (EP)

Orthogonal or Nearly Orthogonal Test Designs (DOEs)

Simplify, Perfect, Innovate

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Page 20

	Run	Actu	al Settin	gs	Coc	ded Matr	İX	Responses
		(1 GHz, 2.5 GHz)	(2 GB, 4 GB)	(50 GB, 500 GB)	(A)	(B)	(C)	·
		CPU Speed	RAM	HD Size	CPU Speed	RAM	HD Size	
	1							
	2							
	3							
	4							
	5							
	6							
	7							
<u>ES</u>	8							

©2014 Air Academy Associates, LLC. Do Not Reproduce. Page 21

ORTHOGONAL DESIGNS

	Run	Actual Settings (1 GHz, 2.5 GHz) (2 GB, 4 GB) (50 GB, 500 GB) CPU Speed RAM HD Size				led Matr (B) RAM	ÍX (C) HD Size	Responses
	1	1						
	2	1						
	3	1						
	4	1						
	5	2.5						
	6	2.5						
	7	2.5						
<u>ES</u>	8	2.5						

AIR ACADEMY ASSOCIATI

SIMPLE DEFINITION OF TWO-LEVEL ORTHOGONAL DESIGNS

	Run	Actu (1 GHz, 2.5 GHz) CPU Speed	Jal Settin (2 GB, 4 GB) RAM	GS (50 GB, 500 GB) HD Size	(A) CPU Speed	led Mati	rix (C) HD Size	Responses
	1	1	2					
	2	1	2					
	3	1	4					
	4	1	4					
	5	2.5	2					
	6	2.5	2					
EC	7	2.5	4					
<u>20</u>	8	2.5	4					

AIR ACADEMY ASSOCIATE

SIMPLE DEFINITION OF TWO-LEVEL ORTHOGONAL DESIGNS

	Run	Run Actual Settings (1 GHz, 2.5 GHz) (2 GB, 4 GB) (50 GB, 500 GB)				ded Matı ®	rix (c)	Responses
	1	1	2	50	CPU Speed	RAM	HD Size	
	2	1	2	500				
	3	1	4	50				
	4	1	4	500				
	5	2.5	2	50				
	6	2.5	2	500				
FS	7	2.5	4	50				
	8	2.5	4	500				

HIGH THROUGHPUT TESTING (ALL PAIRS)

SIMPLE DEFINITION OF TWO-LEVEL ORTHOGONAL DESIGNS

Run	Actu		GS (50 GB, 500 GB)	Co	ded Matr	rix	Responses
	CPU Speed	RAM	HD Size	(A) CPU Speed	(B) RAM	(C) HD Size	
1	1	2	50	-1	-1	-1	
2	1	2	500	-1	-1	+1	
3	1	4	50	-1	+1	-1	
4	1	4	500	-1	+1	+1	
5	2.5	2	50	+1	-1	-1	
6	2.5	2	500	+1	-1	+1	
7	2.5	4	50	+1	+1	-1	
8	2.5	4	500	+1	+1	+1	

Simplify, Perfec

	A Full Factorial Design for 3 Factors, Each at 2 Levels												
	Run	Α	В	С									
	1	-	-	-									
	2	-	-	+									
	3	-	+	-									
	4	-	+	+									
	5	+	-	-									
	6	+	-	+									
	7	+	+	-									
	8	+	+	+									
©2014	4 Air Academy As	sociates, LLC. D	o Not Reproduce.		Page	26							

AIR ACADEMY ASSOCIATES

	A Full Factorial Design for 3 Factors, Each at 2 Levels										
Run	A	В	С	AB							
1	-	-	-	+							
2	-	-	+	+							
3	-	+	-	-							
4	-	+	+	-							
5	+	-	-	-							
6	+	-	+	-							
7	+	+	-	+							
8	+	+	+	+							

AIR ACADEMY ASSOCIATES

	A Full Factorial Design for 3 Factors, Each at 2 Levels										
	Run	A	В	С	AB	AC					
-	1	-	-	-	+	+					
	2	-	-	+	+	-					
	3	-	+	-	-	+					
	4	-	+	+	-	-					
	5	+	-	-	-	-					
	6	+	-	+	-	+					
	7	+	+	-	+	-					
	8	+	+	+	+	+					

AIR ACADEMY ASSOCIATES

	A Full Factorial Design for 3 Factors, Each at 2 Lev									
	Run	Α	В	С	AB	AC	BC			
_	1	-	-	-	+	+	+	-		
	2	-	-	+	+	-	-			
	3	-	+	-	-	+	-			
	4	-	+	+	-	-	+			
	5	+	-	-	-	-	+			
	6	+	-	+	-	+				
	7	+	+	-	+	-	-			
	8	+	+	+	+	+	+			

AIR ACADEMY ASSOCIATES

	A Full Factorial Design for 3 Factors, Each at 2 Levels						
Run	A	В	С	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	-	-	+	+	-	-	+
3	-	+	-	-	+	-	+
4	-	+	+	-	-	+	-
5	+	-	-	-	-	+	+
6	+	-	+	-	+	-	-
7	+	+	-	+	-	-	-
8	+	+	+	+	+	+	+

AIR ACADEMY ASSOCIATES

Simplify, Perfect, Innovate

Page 30

What can DOE do for us?

- An optimal data collection methodology
- "Interrogates" the process
- Used to identify important relationships between inputs and outputs
- Identifies important interactions between process variables
- Can be used to optimize a process and assess risk
- Changes "I think" to "I know"

Three Major Reasons for Using a DOE

Screening

- For testing many factors in order to separate the critical factors from the trivial many.
- Modeling

- For **building functions** that can be used to predict outcomes, assess risk, and optimize performance. These include the ability to evaluate interaction and higher order effects. This is also called characterizing the performance.
- Performance Verification and Validation
 - For confirming that a system performs in accordance with its specifications/requirements.

Key Considerations for Determining the Test Design

- The Purpose of the Test (Screening, Modeling, Performance Validation)
- Number of Factors (k)
- Number of Levels each factor is to be tested at
- Number of replications (sample size), which will be dependent upon the desired confidence and power of the test

Two Types of Risk in Evaluating the Result of a Test

- α Risk = **P(false detection)** means we falsely concluded that a factor is important
 - **p-value** gives the exact **P(false detection)**
 - **Confidence** = [1 p-value] x 100%
 - Rule of Thumb (ROT) for "highly significant" result: Confidence \geq 95%
- β Risk = **P(missed detection)** means we failed to detect something important
 - **Prover** = $[1 P(missed detection)] \times 100\%$
 - Rule of Thumb (ROT) for sufficient power: Power \geq 75%
 - A Priori (prior to the test) power calculations are good for test planning purposes, and sample size is the way we can control the power of the test.

Full Factorial vs. Fractional Factorial (3 factors at 2 levels)

2³ = 8-run Full Factorial Design

Full Factorial vs. Fractional Factorial (3 factors at 2 levels)

Value Delivery: Reducing Time to Market for New Technologies

OUTPUT

- Total # of Combinations = 3⁵ = 243
- Central Composite Design: n = 30

Patent Holder: Dr. Bert Silich

Simplify, Perfect, Innovate **INPUT**

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Page 37

Aircraft Equations

- $$\begin{split} \mathsf{C}_{\mathsf{L}} = & .233 + .008(\mathsf{P})^2 + .255(\mathsf{P}) + .012(\mathsf{R}) .043(\mathsf{WD1}) .117(\mathsf{WD2}) + .185(\mathsf{WD3}) + .010(\mathsf{P})(\mathsf{WD3}) .042(\mathsf{R})(\mathsf{WD1}) + .035(\mathsf{R})(\mathsf{WD2}) + .016(\mathsf{R})(\mathsf{WD3}) + .010(\mathsf{P})(\mathsf{R}) .003(\mathsf{WD1})(\mathsf{WD2}) .006(\mathsf{WD1})(\mathsf{WD3}) \end{split}$$
- $$\begin{split} \mathsf{C}_{\mathsf{D}} = & .058 + .016(\mathsf{P})^2 + .028(\mathsf{P}) .004(\mathsf{WD1}) .013(\mathsf{WD2}) + .013(\mathsf{WD3}) + .002(\mathsf{P})(\mathsf{R}) .004(\mathsf{P})(\mathsf{WD1}) \\ & .009(\mathsf{P})(\mathsf{WD2}) + .016(\mathsf{P})(\mathsf{WD3}) .004(\mathsf{R})(\mathsf{WD1}) + .003(\mathsf{R})(\mathsf{WD2}) + .020(\mathsf{WD1})^2 + .017(\mathsf{WD2})^2 \\ & + .021(\mathsf{WD3})^2 \end{split}$$
- $C_{Y} = -.006(P) .006(R) + .169(WD1) .121(WD2) .063(WD3) .004(P)(R) + .008(P)(WD1) .006(P)(WD2) .008(P)(WD3) .012(R)(WD1) .029(R)(WD2) + .048(R)(WD3) .008(WD1)^{2}$
- $$\begin{split} \textbf{C}_{M} = & .023 .008(P)^{2} + .004(P) .007(R) + .024(WD1) + .066(WD2) .099(WD3) .006(P)(R) + \\ & .002(P)(WD2) .005(P)(WD3) + .023(R)(WD1) .019(R)(WD2) .007(R)(WD3) + .007(WD1)^{2} \\ & .008(WD2)^{2} + .002(WD1)(WD2) + .002(WD1)(WD3) \end{split}$$
- $$\begin{split} \mathsf{C}_{\mathsf{YM}} = & .001(\mathsf{P}) + .001(\mathsf{R}) .050(\mathsf{WD1}) + .029(\mathsf{WD2}) + .012(\mathsf{WD3}) + .001(\mathsf{P})(\mathsf{R}) .005(\mathsf{P})(\mathsf{WD1}) .004(\mathsf{P})(\mathsf{WD2}) .004(\mathsf{P})(\mathsf{WD3}) + .003(\mathsf{R})(\mathsf{WD1}) + .008(\mathsf{R})(\mathsf{WD2}) .013(\mathsf{R})(\mathsf{WD3}) + .004(\mathsf{WD1})^2 \\ & + .003(\mathsf{WD2})^2 .005(\mathsf{WD3})^2 \end{split}$$
- $C_{e} = .003(P) + .035(WD1) + .048(WD2) + .051(WD3) .003(R)(WD3) + .003(P)(R) .005(P)(WD1) + .005(P)(WD2) + .006(P)(WD3) + .002(R)(WD1)$

Fusing Titanium and Cobalt-Chrome

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect,

Innovate

Page 39

DOE "Market Research" Example

Suppose that, in the auto industry, we would like to investigate the following automobile attributes (i.e., factors), along with accompanying levels of those attributes:

A :	Brand of Auto:	-1 = foreign		+1 = domestic
B:	Auto Color:	-1 = light	0 = bright	+1 = dark
C :	Body Style:	-1 = 2-door	0 = 4-door	+1 = sliding door/hatchback
D:	Drive Mechanism:	-1 = rear wheel	0 = front wheel	+1 = 4-wheel
E:	Engine Size:	-1 = 4-cylinder	0 = 6-cylinder	+1 = 8-cylinder
F:	Interior Size:	-1 ≤ 2 people	0 = 3-5 people	+1 ≥ 6 people
G:	Gas Mileage:	-1 ≤ 20 mpg	0 = 20-30 mpg	+1 ≥ 30 mpg
H:	Price:	-1 ≤ \$20K	0 = \$20-\$40K	+1 ≥ \$40K

In addition, suppose the respondents chosen to provide their preferences to product profiles are taken based on the following demographic:

J: Age:	$-1 \le 25$ years old	+1 \geq 35 years old
K: Income:	-1 ≤ \$30K	+1 ≥ \$40K
L: Education:	-1 < BS	+1 ≥ BS

©2014 Air Academy Associates, LLC. Do Not Reproduce.	Page 40	
--	---------	--

DOE "Market Research" Example (cont.)

Question: Choose the best design for evaluating this scenario

Answer: L₁₈ design with attributes A - H in the inner array and factors J, K, and L in the outer array, resembling an L₁₈ robust design, as shown below:

									L	-	+	-	+	-	+	-	+		
									Κ	-	-	+	+	-	-	+	+		
									J	-	-	-	-	+	+	+	+		
Run*	Α	В	С	D	Ε	F	G	Н		y ₁	y ₂	y ₃	y ₄	y 5	y 6	y 7	y 8	ÿ	S
1	-	-	-	-	-	-	-	-											
2	-	-	0	0	0	0	0	0			Segn	nenta	tion o	of the	popu	lation	or		
3	-	-	+	+	+	+	+	+			Ŭ				· ·				
4	-	0		-	0	0	+	+				Res	spond	lent F	Profile	S			
5	-	0	0	0	+	+	-	-											
6	-	0	+	+	-	-	0	0											
7	-	+		0	-	+	0	+											
8	-	+	0	+	0	-	+	-											
9	-	+	+	-	+	0	-	0											
10	+	-		+	+	0	0	-											
11	+	-	0	-	-	+	+	0											
12	+	-	+	0	0	-	-	+											
13	+	0		0	+	-	+	0											
14	+	0	0	+	-	0	-	+											
15	+	0	+	-	0	+	0	-											
16	+	+		+	0	+	-	0											
17	+	+	0	-	+	-	0	+											
18	+	+	+	0	-	0	+	-											

ACADEMY ASSOCIAT Simplify, Perfect,

Simplify, Perfect Innovate

* 18 different product profiles

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Google on DOE (quotes* from Daryl Pregibon, Google Engineer)

"From a user's perspective, a query was submitted and results appear. From Google's perspective, the user has provided an opportunity to test something. What can we test? Well, there is so much to test that we have an Experiment Council that vets experiment proposals and quickly approves those that pass muster."

"We <u>evangelize</u> experimentation to the extent that we provide a mechanism for advertisers to run their own experiments.

... allows an advertiser to run a (full) factorial experiment on its web page. Advertisers can explore layout and content alternatives while Google randomly directs queries to the resulting treatment combinations. Simple analysis of click and conversion rates allows advertisers to explore a range of alternatives and their effect on user awareness and interest."

<u>Air</u> <u>Academy</u> Associates

Simplify, Perfect, Innovate * Taken From: Statistics @ Google in Amstat News, May 2011

Growth Rate of Full-Factorial Designs

For 2-level designs and k factors: 2^k combinations

- for k = 2 factors: $2^2 = 4$ combinations
- for k = 3 factors: $2^3 = 8$ combinations
- for k = 10 factors: $2^{10} = 1,024$ combinations

For 3-level designs and k factors: 3^k combinations

- for k = 2 factors: $3^2 = 9$ combinations
- for k = 3 factors: $3^3 = 27$ combinations
- for k = 10 factors: $3^{10} = 59,049$ combinations

What if the # of factors and/or the number of levels gets large?

Perfect.

nnovate

Latin Hypercube Designs (space filling designs)

- Method to populate the design space when using deterministic simulation models or when many variables are involved.
- Design space has k variables (or dimensions).
 Ex: Assume k = 2
- Suppose a sample of size n is to be taken;
 Stratify the design space into n^k cells.

Ex: Assume n = 5; $n^k = 5^2 = 25$

Note: there are n=5 strata for each of the k=2 dimensions.

Each of the n points is sampled such that each marginal strata is represented only once in the sample.

Note: each sample point has its own unique row and column.

 X_2

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

Page 44

Nearly Orthogonal Latin Hypercube Design (20 variables each at 20 levels projected onto x1 vs x2)

Note the balance in the design.

©2014 Air Academy Associates, LLC. Do Not Reproduce.	Page 45
--	---------

Examples of Simulation and High Performance Computing (HPC)

Simulation of stress and vibrations of turbine assembly for use in nuclear power generation

Automotive

Simulation of underhood thermal cooling for decrease in engine space and increase in cabin space and comfort

Evaluation of dual bird-strike on aircraft engine nacelle for turbine blade containment studies

Aerospace

Electronics

Simplify, Perfect, Innovate Evaluation of cooling air flow behavior inside a computer system chassis

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Page 46

Examples of Computer Aided Engineering (CAE) and Simulation Software

Mechanical motion: Multibody kinetics and dynamics ADAMS® DADS

Implicit Finite Element Analysis: Linear and nonlinear statics, dynamic response MSC.Nastran[™], MSC.Marc[™]

ANSYS® Pro MECHANICA ABAQUS® Standard and Explicit ADINA

Explicit Finite Element Analysis : Impact simulation, metal forming LS-DYNA RADIOSS PAM-CRASH®, PAM-STAMP

General Computational Fluid Dynamics: Internal and external flow simulation

STAR-CD CFX-4, CFX-5 FLUENT®, FIDAP™ PowerFLOW®

Examples of Computer Aided Engineering (CAE) and Simulation Software (cont.)

Preprocessing: Finite Element Analysis and Computational Fluid Dynamics mesh generation

ICEM-CFD Gridgen Altair® HyperMesh® I-deas® MSC.Patran TrueGrid® GridPro FEMB ANSA

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Applying Modeling and Simulation to Automotive Vehicle Design

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Applying Modeling and Simulation to Automotive Vehicle Design (cont.)

Simplify, Perfect, Innovate

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Page 50

Using DOE to "Optimize the Simulator"

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Environments Where Simulation and Modeling Is Beneficial

- A high number of design variables
- A substantial number of design subsystems and engineering disciplines
- Interdependency and interaction between the subsystems and variables
- Multiple response variables
- Need to characterize the system at a higher level of abstraction
- Time and/or space must be compressed

Perfect.

Innovate

Introduction to High Throughput Testing (HTT)

- A recently developed technique based on combinatorics
- Used to test myriad combinations of many factors (typically qualitative) where the factors could have many levels
- Uses a minimum number of runs or test combinations to do this
- Software is needed to select the minimal subset of all possible combinations to be tested so that all 2-way combinations are tested.
- A run or row in an HTT matrix is, like DOE, a combination of different factor levels
- HTT has its origins in the pharmaceutical business where in drug discovery many chemical compounds are combined together at many different strengths to try to produce a reaction.

Simplify, Perfect, Innovate Other industries are now using HTT, e.g., software testing, materials discovery, integration and validation testing (see example on next page).

Basic Combinatorics Relationship

HTT Example (Performance Verification and Validation)

- We would like to perform verification testing with the 4 input factors described below.
- All possible combinations would involve how many test combinations?
- If we were interested in testing all pairs only, how many runs would be in the test matrix and what would those combinations be? To answer this question, we used the ProTest software. See next page.

Sensor Type	Weapon Type	External Data Link	Target Type
S1	W1	Yes	T1
S2	W2	Νο	T2
S3	W 3		Т3
S4			Τ4
			Τ5

High Throughput Testing Example (cont.) 20 Test Cases

	Sensor	Weapon	Data Link	Target
Case 1	S1	W2	Yes	T1
Case 2	S4	W1	Yes	T2
Case 3	S2	W1	No	Т3
Case 4	S 3	W3	Yes	T4
Case 5	S2	W3	Yes	T5
Case 6	S4	W3	No	T1
Case 7	S 3	W2	No	T2
Case 8	S1	W3	Yes	Т3
Case 9	S1	W1	No	T4
Case 10	S 3	W1	No	T5
Case 11	S2	W1	No	T1
Case 12	S1	W3	No	T2
Case 13	S4	W2	No	Т3
Case 14	S2	W2	Yes	T4
Case 15	S4	W2	No	T5
Case 16	S3	W2	Yes	Т3
Case 17	S1	W1	Yes	T5
Case 18	S2	W2	Yes	T2
Case 19	S3	W3	Yes	T1
Case 20	S4	W2	No	T4

AIR ACADEMY ASSOCIATES

High Throughput Testing Example (cont.) Locating the Problem

 If Case 20 were the only failed test, what could be the reason? S4/W2, S4/No, S4/T4, W2/No, W2/T4, No/T4

	Sensor	Weapon	Data Link	Target
Case 1	S1	W2	Yes	T1
Case 2	S4	W1	Yes	T2
Case 3	S2	W1	No	Т3
Case 4	S3	W3	Yes	T4
Case 5	S2	W3	Yes	T5
Case 6	S4	W3	No	T1
Case 7	S3	W2	No	T2
Case 8	S1	W3	Yes	Т3
Case 9	S1	W1	No	Τ4
Case 10	S3	W1	No	T5
Case 11	S2	W1	No	T1
Case 12	S1	W3	No	T2
Case 13	S4	W2	No	Т3
Case 14	S2	W2	Yes	Τ4
Case 15	S4	W2	No	T5
Case 16	S3	W2	Yes	Т3
Case 17	S1	W1	Yes	T5
Case 18	S2	W2	Yes	T2
Case 19	S3	W3	Yes	T1
Case 2	0 S 4	W2	No	T4

©2014 Air Academy Associates, LLC. Do Not Reproduce.

High Throughput Testing Example (cont.) Locating the Problem

Weapon Data Link Target

 If Case 1 were the only failed test, what could be the reason? S1/W2, S1/Yes, S1/T1, W2/Yes, W2/T1, Yes/T1

Sensor

				5
Case 1	S1	W2	Yes	T1
Case 2	S4	W1	Yes	T2
Case 3	S2	W1	No	Т3
Case 4	S3	W3	Yes	T4
Case 5	S2	W3	Yes	T5
Case 6	S4	W3	No	T1
Case 7	S3	W2	No	T2
Case 8	S1	W3	Yes	Т3
Case 9	S1	W1	No	Τ4
Case 10	S3	W1	No	T5
Case 11	S2	W1	No	T1
Case 12	S1	W3	No	T2
Case 13	S4	W2	No	Т3
Case 14	S2	W2	Yes	T4
Case 15	S4	W2	No	T5
Case 16	S3	W2	Yes	Т3
Case 17	S1	W1	Yes	T5
Case 18	S2	W2	Yes	T2
Case 19	S3	W3	Yes	T1
Case 20	S4	W2	No	T4

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Submarine Threat Detection Example

Suppose we want to perform a verification test with the following 7 input factors (with their respective settings):

- Submarine Type (S1, S2, S3)
- Ocean Depth (Shallow, Deep, Very Deep)
- Sonar Type (Active, Passive)
- Target Depth (Surface, Shallow, Deep, Very Deep)
- Sea Bottom (Rock, Sand, Mud)
- Control Mode (Autonomous, Manual)
- Ocean Current (Strong, Moderate, Minimal)

All possible combinations would involve how many runs in the test? (3x3x2x4x3x2x3 = 1296)

Simplify, Perfect, Innovate If we were interested in testing all pairs only, how many runs would be in the test? Pro Test generated the following test matrix.

Submarine Threat Detection Example (cont.) (All Pairs Testing from ProTest generates 15 test cases)

	Factor_A	Factor_B	Factor_C	Factor_D	Factor_E	Factor_F	Factor_G
Factor	Submarine Type	Ocean Depth	Sonar Type	Target Depth	Sea Bottom	Control Mode	Ocean Current
Name							
Case 1	S3	Deep	Passive	Very Deep	Mud	Manual	Minimal
Case 2	S1	Very Deep	Passive	Surface	Rock	Autonomous	Strong
Case 3	S2	Shallow	Active	Shallow	Rock	Manual	Moderate
Case 4	S2	Deep	Passive	Deep	Sand	Autonomous	Moderate
Case 5	S1	Shallow	Active	Surface	Sand	Manual	Minimal
Case 6	S1	Very Deep	Passive	Shallow	Mud	Autonomous	Minimal
Case 7	S3	Very Deep	Active	Deep	Mud	Manual	Strong
Case 8	S2	Very Deep	Active	Very Deep	Sand	Autonomous	Strong
Case 9	53	Shallow	Passive	Shallow	Mud	Autonomous	Strong
Case 10	S3	Deep	Active	Surface	Rock	Manual	Moderate
Case 11	S1	Shallow	Active	Deep	Rock	Autonomous	Minimal
Case 12	S1	Deep	Passive	Very Deep	Rock	Manual	Moderate
Case 13	S2	Very Deep	Active	Surface	Mud	Autonomous	Moderate
Case 14	S3	Deep	Active	Shallow	Sand	Manual	Strong
Case 15	S2	Shallow	Active	Very Deep	Rock	Manual	Minimal

Command & Control Test Example

(15 factors each at various levels) Total Combinations: 20,155,392

Variable or Factor	Levels	(# of	levels)
Mission Snapshots	Entry, Operations, Consolidation	า	(3)
Network Size	10 Nodes, 50 Nodes, 100 Nodes		(3)
Network Loading	Nominal, 2X, 4X		(3)
Movement Posture	ATH, OTM1, OTM2		(3)
SATCOM Band	Ku, Ka, Combo		(3)
SATCOM Look Angle	0, 45, 75		(3)
Link Degradation	0%, 5%, 10%, 20%		(4)
Node Degradation	0%, 5%, 10%, 20%		(4)
EW	None, Terrestrial, GPS		(3)
Interoperability	Joint Services, NATO		(2)
IA	None, Spoofing, Hacking, Flood	ing	(4)
Security	NIPR, SIPIR		(2)
Message Type	Data, Voice, Video		(3)
Message Size	Small, Medium, Large, Mega		(4)
Distance Between Nodes	Short, Average, Long		(3)

Command & Control Test Example (cont.)

(All Pairs Testing from ProTest generates 26 test cases)

	Factor_A	Factor_B	Factor_C	Factor_D	Factor_E	Factor_F	Factor_G	Factor_H	Factor_I	Factor_J	Factor_K	Factor_L	Factor_M	Factor_N	Factor_0
Factor	Mission	Network	Network	Movement	SATCOM	SATCOM	Link	Node	EW	Interoperability	IA	Security	Message	Size of	Node
Name		Size	Load		Band	Angle	Degradation	Degradation					Туре	Message	Distance
Case 1	Entry	100 nodes	4 ×	OTM2	Combo	0	0%	0%	None	NATO	None	SIPIR	Voice	Medium	Short
Case 2	Consolidation	10 nodes	Normal	ATH	Ka	45	5%	5%	GPS	NATO	Spoofing	NIPB	Video	Large	Normal
Case 3	Operation	50 nodes	2X	OTM1	Ku	75	20%	20%	Terrestrial	Joint Serv	Hacking	NIPB	Voice	Small	Long
Case 4	Entry	50 nodes	2X	ATH	Ku	45	10%	10%	None	NATO	Flooding	NIPB	Data	Mega	Short
Case 5	Operation	100 nodes	Normal	OTM1	Combo	75	10%	10%	GPS	NATO	Spoofing	SIPIR	Data	Small	Normal
Case 6	Operation	10 nodes	4×	OTM2	Combo	45	0%	5%	Terrestrial	Joint Serv	None	NIPB	Video	Mega	Long
Case 7	Consolidation	100 nodes	4×	ATH	Ka	75	20%	10%	Terrestrial	NATO	Hacking	SIPIR	Video	Medium	Long
Case 8	Operation	10 nodes	Normal	ATH	Ka	0	20%	0%	Terrestrial	Joint Serv	Flooding	NIPB	Data	Large	Short
Case 9	Consolidation	10 nodes	2X	OTM2	Ku	45	5%	20%	None	Joint Serv	Flooding	SIPIR	Voice	Medium	Normal
Case 10	Consolidation	50 nodes	2X	OTM1	Combo	0	0%	20%	GPS	NATO	None	NIPB	Data	Mega	Normal
Case 11	Entry	50 nodes	Normal	OTM2	Ka	75	10%	5%	GPS	Joint Serv	Hacking	SIPIR	Voice	Large	Long
Case 12	Entry	50 nodes	4 ×	OTM1	Ku	0	5%	0%	None	Joint Serv	Spoofing	SIPIR	Video	Small	Long
Case 13	Consolidation	100 nodes	4X	OTM2	Ku	45	20%	5%	GPS	Joint Serv	Flooding	NIPB	Data	Small	Short
Case 14	Entry	10 nodes	2X	OTM1	Ka	75	5%	0%	None	Joint Serv	Hacking	SIPIR	Data	Mega	Normal
Case 15	Entry	50 nodes	2X	ATH	Ka	75	0%	20%	Terrestrial	NATO	Spoofing	NIPB	Video	Large	Short
Case 16	Consolidation	10 nodes	4 ×	ATH	Ku	D	10%	20%	Terrestrial	NATO	None	NIPB	Video	Small	Normal
Case 17	Operation	50 nodes	Normal	OTM1	Ku	75	0%	5%	None	Joint Serv	Flooding	NIPB	Data	Medium	Short
Case 18	Operation	10 nodes	Normal	OTM1	Ka	75	20%	10%	None	Joint Serv	None	SIPIR	Video	Large	Normal
Case 19	Operation	100 nodes	2X	OTM2	Combo	0	5%	10%	Terrestrial	NATO	Hacking	SIPIR	Data	Large	Short
Case 20	Consolidation	100 nodes	Normal	ATH	Combo	0	20%	20%	Terrestrial	Joint Serv	Spoofing	NIPB	Voice	Mega	Short
Case 21	Consolidation	50 nodes	2X	OTM1	Ka	45	10%	0%	GPS	Joint Serv	Spoofing	SIPIR	Data	Medium	Normal
Case 22	Entry	100 nodes	Normal	OTM1	Combo	0	20%	5%	GPS	NATO	Flooding	NIPB	Video	Medium	Long
Case 23	Operation	10 nodes	Normal	ATH	Ka	45	0%	10%	None	NATO	Hacking	SIPIR	Voice	Small	Normal
Case 24	Entry	50 nodes	4 ×	ATH	Ku	45	5%	20%	None	NATO	None	NIPB	Video	Large	Long
Case 25	Consolidation	10 nodes	2X	ATH	Ku	75	10%	5%	None	Joint Serv	Spoofing	NIPB	Data	Large	Long
Case 26	Consolidation	100 nodes	Normal	OTM2	Combo	45	5%	20%	GPS	Joint Serv	Spoofing	NIPB	Voice	Mega	Normal

©2014 Air Academy Associates, LLC. Do Not Reproduce.

The Efficiency of All Pairs Testing

- Suppose we had 75 Factors to test.
- Suppose we wanted to test each of these at 2 levels.
- How many total combinations are there?

2⁷⁵ = 37, 778, 931, 862, 957, 161, 709, 568

- i.e., 37 Sextillion, 778 Quintillion, 931 Quadrillion, 862 Trillion, 957 Billion, 161 Million, 709 Thousand, 568
- What is the minimum number of these combinations that will have to be tested in order to test every 2-way combination?
- To answer this question, we used Pro-Test software. The answer is 14 runs or experimental test combinations.

Simplify, Perfect, Innovate For k factors each having the same number of levels tested, say v, then the minimum number of tests ≈ v² (In k)

HTT Applications

- Reducing the cost and time of testing while maintaining adequate test coverage
- Integration, functionality, or validation testing
- Creating a test plan to stress a product and discover problems
- Prescreening before a large DOE to ensure all 2-way combinations are feasible before discovering, midway through an experiment, that certain combinations are not feasible

AIR ACADEMY ASSOCIATE

Key Take-Aways

- DOE brings orthogonal or nearly orthogonal designs into play.
- Various approaches to combinatorial test, to include OFAT and Oracle.
- Orthogonality is key to being able to evaluate the effects of factors and their interactions independently from one another. It also connects test and analysis (Scientific Test and Analysis Techniques – STAT).
- Factorial designs are great, but in a world of large test design spaces, we need something else.
- Nearly Orthogonal Latin Hypercube Designs provide a sampling strategy to test a large number of factors with a much smaller number of runs than what a factorial design requires, while still retaining adequate orthogonality. In NOLHDs, each factor is tested at the same number of levels (typically at least 5 levels).
- All Pairs Testing, a special instance of High Throughput Testing, is a way to get great test coverage (i.e., all 2-way combinations) with a minimal number of runs when the test scenario involves mixed factors and mixed levels.

References

- ACTS Software (available from NIST) does not generate orthogonal designs
- Cawse, James N. Experimental Strategies for Combinatorial and High-Throughput Materials Development. Accounts of Chemical Research 34, No. 3, (2001): 213-221.
- Kuhn, Kacker, and Lei. *Practical Combinatorial Testing.* NIST Special Publication 800-142, 2010.
- Pro-Test Software (Air Academy Associates) does not generate orthogonal designs
- rdExpert Software (Phadke Associates) does generate orthogonal designs
- Reagan and Kiemele. *Design for Six Sigma: The Tool Guide for Practitioners*. Bainbridge Island, WA: CTQ Media, 2008.
- Schmidt and Launsby. Understanding Industrial Designed Experiments, 4th ed. Colorado Springs, CO: Air Academy Press, 2005.
- Stobie, Keith. *Too Darned Big to Test*. Queue 3, No. 1 (February 2005): 30-37.
- AIR ACADEMY ASSOCIATES

Simplify, Perfect, Innovate <u>www.pairwise.org</u>

Thank You

Questions

Simplify, Perfect, Innovate Colorado Springs, Colorado

©2014 Air Academy Associates, LLC. Do Not Reproduce.

Page 67