

Full Factorial Designs (2 Levels)

Copyright © 2020

All rights reserved. Do not reproduce.

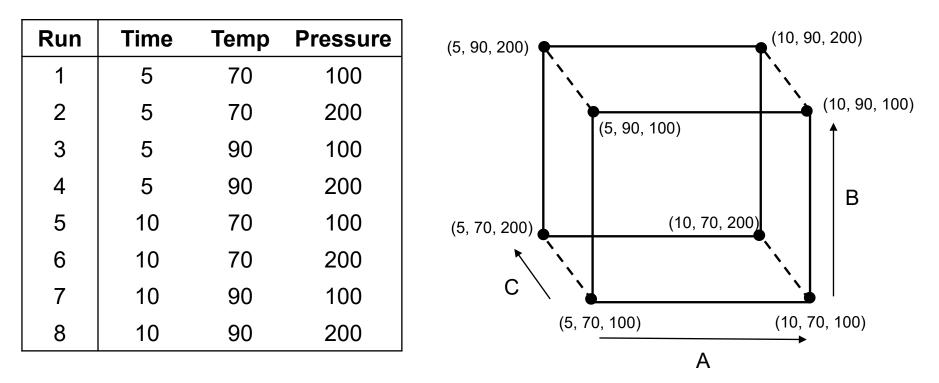
www.airacad.com

User Agreement and Copyright Information

- This recording and the accompanying guide contain copyrighted and proprietary content of Air Academy Associates, LLC. You are authorized to use this material for personal reference, but not for any commercial use. You may not modify, license, sub-license, distribute, copy, translate or create derivative works based on this guide, in part or in whole, without permission from Air Academy Associates.
- Other copyright information:
 - Six Sigma is a service mark of Motorola, Inc. Microsoft[®] and Excel[®] are registered trademarks of Microsoft Corporation in the United States and in other territories.
 - SPC XL[™] and DOE Pro XL[™] are copyright SigmaZone.com and Air Academy Associates, LLC. You may not copy, modify, distribute, display, license, reproduce, sell or use commercially any screen shots or any component contained therein without the express written permission of SigmaZone.com and Air Academy Associates, LLC. All rights reserved. SigmaZone.com may be contacted at <u>www.SigmaZone.com</u>. Air Academy Associates may be contacted at <u>www.airacad.com</u>.
 - Quantum XL 2016[™] and Pro-Test[™] are copyright SigmaZone.com. You may not copy, modify, distribute, display, license, reproduce, sell or use commercially any screen shots or any component contained therein without the express written permission of SigmaZone.com. All rights reserved. SigmaZone.com may be contacted at <u>www.SigmaZone.com</u>.

Full Factorial Designs (2 Levels)

- In this session, we will discuss:
 - What is a Full Factorial Design?
 - Advantages and Disadvantages of Full Factorials
 - Estimating Effects and What is an Interaction?
 - Orthogonality and Coding of Design Matrices
 - Analysis of a Full Factorial Design
 - Graphical Analysis
 - marginal means plot, interaction plot, pareto, surface/contour plot
 - Statistical Analysis
 - regression, p-values, R-squared value, Adjusted R-squared
 - Prediction Equations
 - Optimization
 - Examples of Full Factorial designs
 - Practice analyzing the data with DOE Pro software and drawing conclusions



- A list of supplemental material and additional practice/review questions for this session are provided at the end of this presentation
- You can download the pdf of this presentation, along with any supporting data files, on the site where you are accessing this course

What is a Full Factorial Design?

- A full factorial is a design where we test all the possible combinations.
- Example:
 - 3 factors (A: time, B: temp, C: pressure)
 - 2 settings for each: (A: 5, 10) (B: 70, 90) (C: 100, 200)
 - The full factorial consists of 8 test combinations (runs)
 - # runs = (# of settings)^{# of factors} = $2^3 = 8$

• Testing at 2 settings (levels) will produce a linear model. As with all DOEs, confirmation is critical to validate assumptions.

Full Factorial Designs

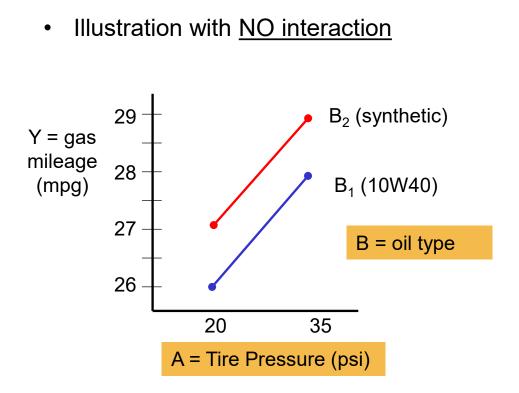
- Advantages
 - Orthogonal (balanced vertically and horizontally)
 - Test and learn about all the possible combinations, including interaction effects
 - Lots of knowledge gained (effects of factors, prediction, optimization)
- Disadvantages
 - Requires a lot of tests if there are a large number of factors (so typically we will conduct screening tests first to help reduce the number of factors)

Orthogonal:

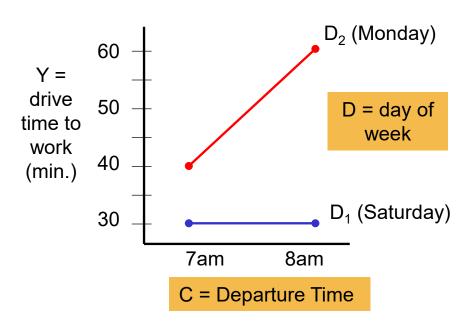
- Vertical balance within a column
- Horizontal balance between columns

Orthogonality allows us to estimate effects independently!

Run	Α	В	С
1	5	70	100
2	5	70	200
3	5	90	100
4	5	90	200
5	10	70	100
6	10	70	200
7	10	90	100
8	10	90	200


The columns will be used to determine the "effect" of each factor.

We'll compare the average response at the low setting of a factor with the average response at the high setting of a factor (upcoming example)


What is an Interaction?

• An interaction between two factors means that the effect that one factor has on the response depends on the setting of another factor

- Q: What effect does tire pressure (A) have on gas mileage? "increase of 2 mpg"
- Q: What effect does oil type (B) have on gas mileage? "increase of 1 mpg"

- Q: What effect does departure time (C) have on drive time? "it depends"
- Q: What effect does day of week (D) have on drive time? "it depends"

Estimating Interaction Effects

- For running the experiment, the design matrix gives us the "recipe" of test settings
- When analyzing the data, however, additional columns are created behind-thescenes, which allow us to estimate the interaction effects

Design Matrix (For running the experiment)							
Run	Α	В	С				
1	5	70	100				
2	5	70	200				
3	5	90	100				
4	5	90	200				
5	10	70	100				
6	10	70	200				
7	10	90	100				
8	10	90	200				

AB
350
350
450
450
700
700
900
900

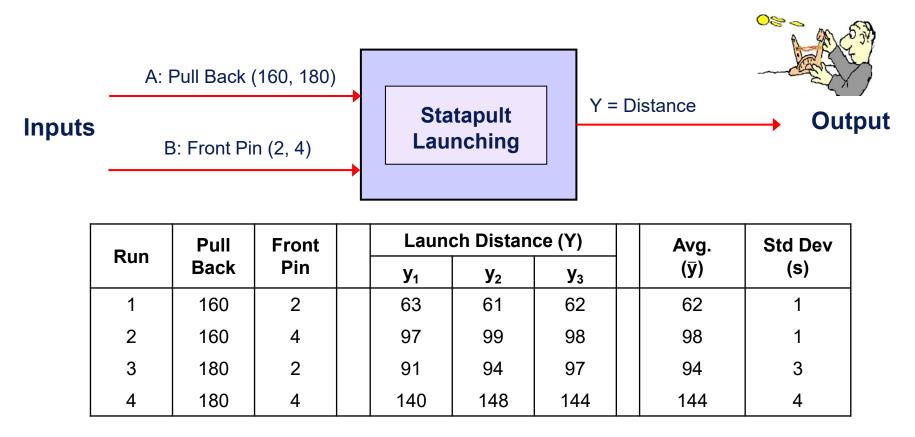
- For example, what if we want to learn about the AB interaction?
- Mathematically, the column to estimate the interaction effect is created by multiplying the A and B columns as shown.
- Is this AB column orthogonal with column A?

Orthogonality and Coding

- For <u>analysis</u> purposes, coding of the design matrix is done by software
- -1 is used for the low setting of a factor, while +1 is used for the high setting
- Coding allows us to:
 - Evaluate all effects independently, including interactions
 - Put everything on the same scale (for comparison of effects)

Run	Α	В	С
1	5	70	100
2	5	70	200
3	5	90	100
4	5	90	200
5	10	70	100
6	10	70	200
7	10	90	100
8	10	90	200

For running the experiment


	Coded Design Matrix										
А	В	С	AB	AC	BC	ABC					
-1	-1	-1	1	1	1	-1					
-1	-1	1	1	-1	-1	1					
-1	1	-1	-1	1	-1	1					
-1	1	1	-1	-1	1	-1					
1	-1	-1	-1	-1	1	1					
1	-1	1	-1	1	-1	-1					
1	1	-1	1	-1	-1	-1					
1	1	1	1	1	1	1					

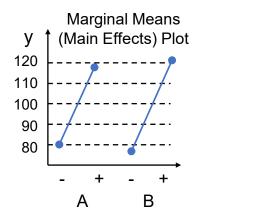
For analyzing the experiment

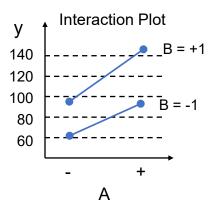
Example: 2 Factor Full Factorial

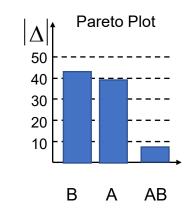
- To see how the analysis works, let's start with a simple 2-factor example
- In a statapult launching process, the pull back angle and front pin position were both varied, and there were 3 replicates. The results of the experiment are shown below:

 The goal is to discover how pull back angle and front pin affect distance, and learn how to meet the customer requirement (target distance = <u>115 inches +/- 6 inches</u>)

for background / reference . . . don't worry, software will do this for us!


Example: 2 Factor Full Factorial (Analysis) (y-hat)


		Run		Pull ack	Front Pin	А	В	AB	Avg. (ȳ)	Std Dev (s)
		1	1	60	2	-1	-1	1	62	1
		2	1	60	4	-1	1	-1	98	1
		3	1	80	2	1	-1	-1	94	3
		4	1	80	4	1	1	1	144	4
	Analysis for		Avg	@ -	80	78	96			
	Average (\overline{y})			Avg	@+	119	121	103		
(A	vg @ -	+) - (Avg	@ -	·) /	Δ	+39	+43	+7		

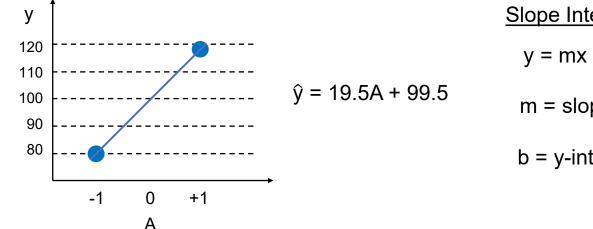

 \overline{y} = overall average = $\frac{62 + 98 + 94 + 144}{4}$ = 99.5

 $\hat{y} = \overline{\bar{y}} + \frac{\Delta_A}{2}(A) + \frac{\Delta_B}{2}(B) + \frac{\Delta_{AB}}{2}(AB)$

$$= 99.5 + \frac{+39}{2}A + \frac{+43}{2}B + \frac{+7}{2}AB = 99.5 + 19.5A + 21.5B + 3.5AB$$

Prediction Equation

$$\hat{y} = \overline{\overline{y}} + \frac{\Delta_A}{2}A + \frac{\Delta_B}{2}B + \frac{\Delta_{AB}}{2}A \cdot B + \dots$$

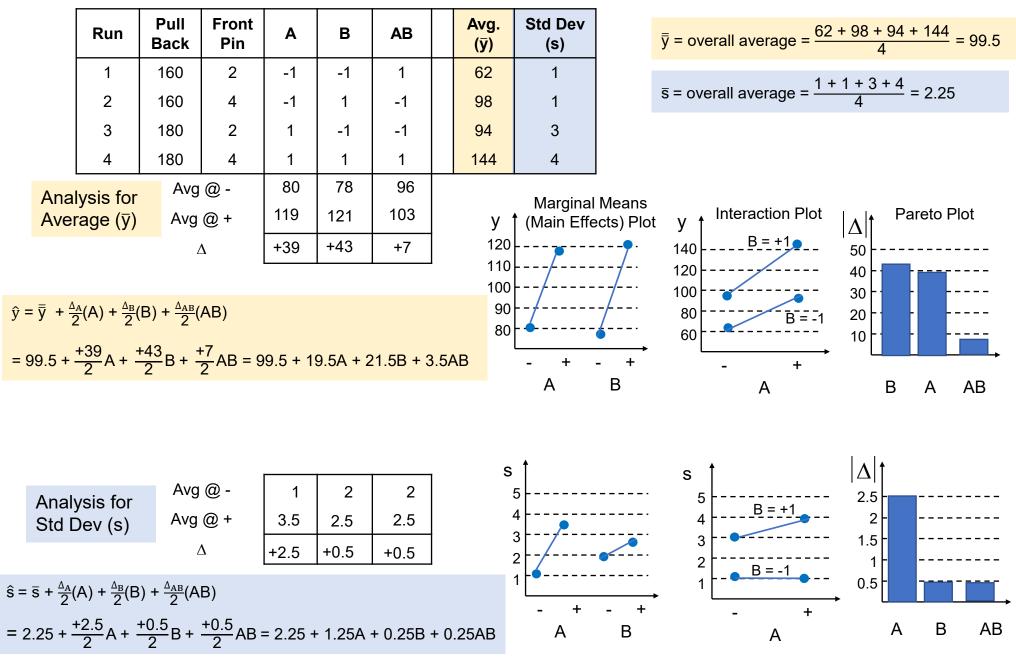

Where does the Prediction Equation come from?

1. Orthogonal design

Assumptions

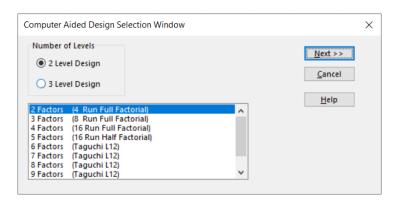
- 2. Orthogonal coding (-1, +1)
- 3. 2 levels only

Prediction Equation for 1 Factor (A)


Slope Intercept Equation of a Line y = mx + b $m = slope = \frac{rise}{run} = \frac{119 - 80}{(1 - (-1))} = \frac{39}{2} = \frac{\Delta}{2}$ b = y-intercept = \overline{y}

Justification for adding on other factors: <u>orthogonality</u>

Example: 2 Factor Full Factorial (Analysis) (with s-hat)



Analysis Using DOE Pro Software

- Let's set up and analyze the 2-factor statapult DOE using DOE Pro software
- First, set up the design matrix. From the SigmaZone (DOE Pro) ribbon:
 <u>Create Design > Computer Aided . . .</u>

File	Home	Insert	Page	Layout	Formulas	Data	Review	View He	elp Acro	obat <mark>Sig</mark> i	maZone
=			<u></u><u></u>+∕_	$\bigvee_{y=f(x)}$	цħХ.	(k_i)				i	
Create Design ~	Historical/C Design		Modify Design ∽	Analyze Design ¥	Graphs and Optimization		Confirmati ′Capability			About DOE PRO	
Co	mputer Aid	ed			DOE PR	.0					
No	on-Compute	r Aided.		fx							
Fra	actional Fact	orial		D	E	F	G	Н	Ι	J	K
1											

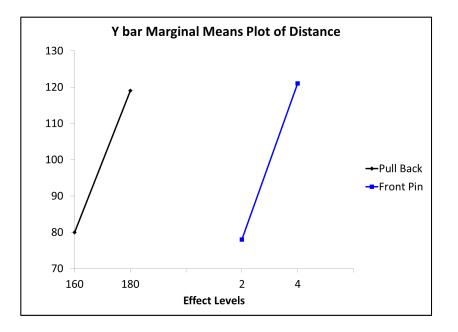
Analysis Using DOE Pro Software (cont.)

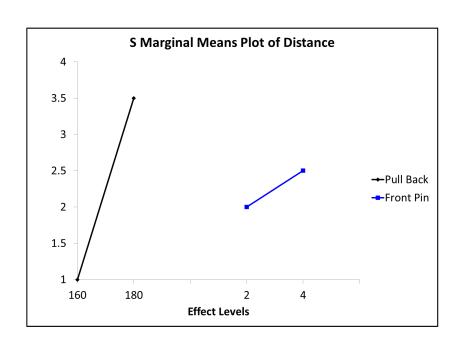
- Name the factors and specify the low and high settings
- Specify the number of responses (1 for this example, distance) and the number of replications (3 for this example)
- Name the response (distance for this example)

Name, Lo	ow, High Definition Wind	ow		×	Number of Replications/Responses	×	Response N	ames	×
Factor (Levels)	he name, low, and high va Name Pull Back	alues for each Fa Low 160	ctor. High	<u>N</u> ext >> << <u>B</u> ack	How many responses do you have?	<u>N</u> ext >> << <u>B</u> ack		response names. You may use up to 15 s for each response name. e #1 Distance	Fi <u>n</u> ish >> << <u>B</u> ack
A (2) B (2)	Front Pin	2	4	<u>C</u> ancel <u>H</u> elp	How many replications would you like? (Note: If using multiple responses create enough replications for the most demanding response.)	<u>C</u> ancel <u>H</u> elp			<u>C</u> ancel <u>H</u> elp
					3				

• When finished setting up the design, input the data into the template as shown:

А	В	С	D	E	F	G	Н	1	J
Factor	Α	В		Distance					
Row #	Pull Back	Front Pin		Y1	Y2	Y3		Y bar	S
1	160	2		63	61	L 62		62	1
2	160	4		97	99	98		98	1
3	180	2		91	94	<mark>l 97</mark>		94	3
4	180	4		140	148	3 144		144	4


Data file: DOE 2 factor statapult.xlsx


Analysis Using DOE Pro Software (Marginal Means Plots)

• To create the marginal means plots, from the SigmaZone (DOE Pro) ribbon:

Analyze Design > Marginal Means Plot. . .

	112	(k_i)
Analyze	Graphs and Optimization ~ A	Residual Co
M	ultiple Response R	egression
-	ncoded Coefficient	S
М	ultiple Plots	
M	arginal Means Plot	
Vi	ew Aliasing Patter	n

Analysis Using DOE Pro Software (Regression Output)

 To create the regression output (y-hat and s-hat models), from the SigmaZone (DOE Pro) ribbon:

<u>Analyze Design > Multiple Response Regression</u>

$\bigvee_{y=f(x)}$	12	$[k]_{i}$	
	Graphs and Optimization ~		
Mu	ultiple Response	Regression	n
Un	coded Coefficie	nts	
AN	IOVA		
М	Itiple Plots		
Ma	arginal Means Pl	ot	
Vie	ew Aliasing Patte	ern	

Y-hat Model					
		Distance		_	_
					ive
Factor	Name	Coeff	P(2 Tail)	Tol	Active
Const		99.500	0.0000		
А	Pull Back	19.500	0.0000	1	Х
В	Front Pin	21.500	0.0000	1	Х
AB		3.500	0.0016	1	Х
	R ²	0.9948			
	Adj R ²	0.9928			
	Std Error	2.5981			
	F	506.5185			
	Sig F	0.0000			
	FLOF	NA			
	Sig FLOF	NA			
	Source	SS	df	MS	
	Regression	10257.0	3	3419.0	
	Error	54.0	8	6.8	
	Error _{Pure}	54.0	8	6.8	
	Error LOF	0.0	0	NA	
	Total	10311.0	11		

Factor	Name	Low	High	Exper
А	Pull Back	160	180	170
В	Front Pin	2	4	3

	Multi	ple Respons	e Prediction	
			99% Confide	ence Interval
	Y-hat	S-hat	Lower Bound	Upper Bound
Distance	99.5000	2.2500	92.750	106.250

-hat Model					
		Distance			Active
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		2.250	NA		
А	Pull Back	1.250	NA	1	Х
В	Front Pin	0.25000	NA	1	Х
AB		0.25000	NA	1	Х
	R ²	1.0000			
	Adj R ²	NA			
	Std Error	NA			
	F	NA			
	Sig F	NA			
	FLOF	NA			
	Sig FLOF	NA			
	Source	SS	df	MS	
	Regression	6.8	3	2.3	
	Error	0.0	0	NA	
	Error _{Pure}	NA	0	NA	
	Error LOF	NA	0	NA	
	Total	6.8	3		

Determining Statistical Significance

- **p-values** (column labeled P(2 tail) in DOE Pro)
 - tells which effects are significant
 - ROT:
 - If p(2 tail) < 0.05, this is a highly significant effect (leave in model)
 - If 0.05 < p(2 tail) < 0.10, this is a moderately significant effect (use judgment, although usually leave in model)
 - If **p(2 tail) > 0.10**, this indicates an insignificant effect (remove from the model)
- Rule of Hierarchy when building models
 - If an interaction (example: AB) or higher order term (example: A²) is significant, then include all <u>main effects</u> involved in that term in the model regardless of their significance
 - Examples:
 - If AB is significant, then include A and B in the model
 - If A² is significant, then include A in the model
- s-hat models with no p-values (for <u>2-level designs ONLY</u>)
 - ROT: Any coefficient (in absolute value) greater than or equal to half the constant term is considered statistically significant (leave in the model)
 - Note: this is an approximate rule of thumb, designed to provide at least 95% confidence. It should not be treated as a razor sharp cutoff. If a coefficient is large and "close" in size to half the constant, try leaving it in the model and re-running the regression to obtain a pvalue.

Assessing the Regression Model Fit

- R-squared Value
 - Measure of "goodness of fit"
 - Scale: from 0 to 1
 - Measures the proportion of variation that is being explained by the regression model
- Adjusted R-squared Value
 - Modified measure of R-squared
 - Adjusts for sample size and/or too many terms in the model
 - More realistic measure of the explanatory value of the model
 - ROT: Want to see the adjusted R-squared value close to the R-squared value (ideally, not less than 90% of R-squared)
- Standard Error
 - Measures the variation (standard deviation) about the regression line
 - This is used as an estimate for standard deviation (s) when there is no s-hat model available
- F value
 - This provides an overall test of the significance of the model.
 - ROT: values over 6 indicate a significant model (i.e., not all regression coefficients are equal to zero). SigF provides a p-value for the test, with values less than 0.05 indicating that the overall model is significant.

Analysis Using DOE Pro Software (Reduced Regression)

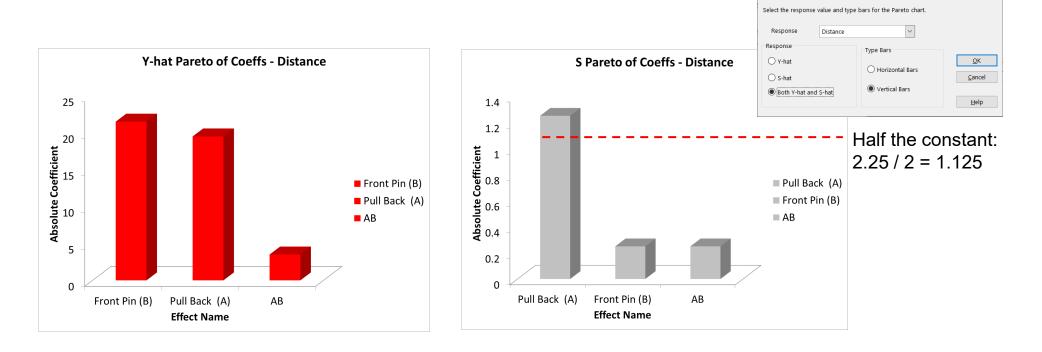
- After re-running the regression to remove the insignificant terms, the resulting output is shown below
- In this example, only B and AB in the s-hat model were insignificant and thus removed from the model

Y-hat Model						_					_	S-hat Model					
		Distance	• •	•		Factor	Name	Low	High	Exper				Distance	•	• •	a 1
Factor	Name	Coeff	P(2 Tail)	Tol	Active							Factor	Name	Coeff	P(2 Tail) Tol	Active
Const		99.500	0.0000			A	Pull Back	160	180	170		Const		2.250	0.0121		_
А	Pull Back	19.500	0.0000	1	Х	В	Front Pin	2	4	3	С	А	Pull Back	1.250	0.0377	1	X
В	Front Pin	21.500	0.0000	1	Х						-		_				
AB		3.500	0.0016	1	Х	_							R ²	0.9259			
							Mult	iple Respons	se Prediction				Adj R ²	0.8889			
	R ²	0.9948											Std Error	0.5000			
	Adj R ²	0.9928							99% Confid	ence Interval			F	25.0000			
	Std Error	2.5981					Y-hat	S-hat	Lower Bound	Upper Bound			Sig F	0.0377			
	F	506.5185				Distance	99.5000	2.2500	92.750	106.250			FLOF	NA			
	Sig F	0.0000									-		Sig FLOF	NA			
	FLOF	NA															
	Sig F _{LOF}	NA											Source	SS	df	MS	
													Regression	6.3	1	6.3	
	Source	SS	df	MS									Error	0.5	2	0.3	
	Regression	10257.0	3	3419.0									Error _{Pure}	0.5	2	0.3	
	Error	54.0	8	6.8									Error LOF	0.0	0	NA	
	Error _{Pure}	54.0	8	6.8									Total	6.8	3		
	Error _{LOF}	0.0	0	NA													
	Total	10311.0	11														

• The prediction models, in coded units, are:

 $\hat{y} = 99.5 + 19.5A + 21.5B + 3.5AB$

ŝ = 2.25 + 1.25A

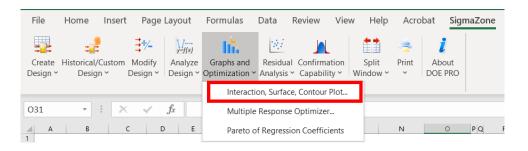

Analysis Using DOE Pro Software (Other Plots)

- Other graphical outputs available include:
 - Interaction, Surface, Contour Plots
 - Pareto of Regression Coefficients

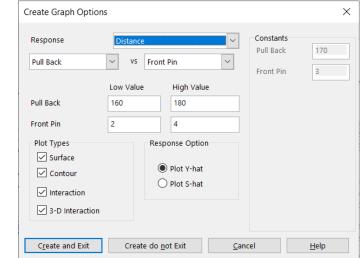
File	Home	Insert	Page	Layout	Formulas	Data	Review	Viev	v Help	Acro	bat Sig	maZone
-	4		∃ *⁄-	$\bigvee_{f(x)}$	lih.	2/i			* *	-	i	
Create Design ∽	Historical, Desig		Modify Design ¥	Analyze Design ~	Graphs and Optimization ~		I Confirma ~ Capabili		Split Window ~	Print ~	About DOE PRO	
					Interacti	on, Surfac	e, Contour	Plot				
O31	*	: ×	~	fx	Multiple	Response	optimizer					
A	В	c	D	E	Pareto o	of Regress	on Coeffici	ents		N	0	PQ

Pareto Of Coefficients Options

 The pareto of the regression coefficients is a graphical summary which compares the magnitude (in absolute value) of the regression coefficients. The color coding is associated with the p-value (e.g., bars in red are associated with terms having a pvalue value below 0.05)

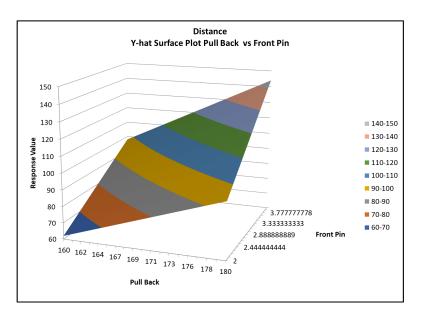


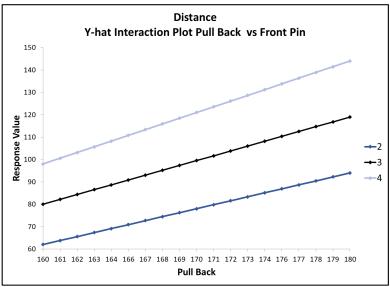
×


Analysis Using DOE Pro Software (Interaction Plots)

• To view an interaction plot and other graphical output, from the SigmaZone (DOE Pro) ribbon select:

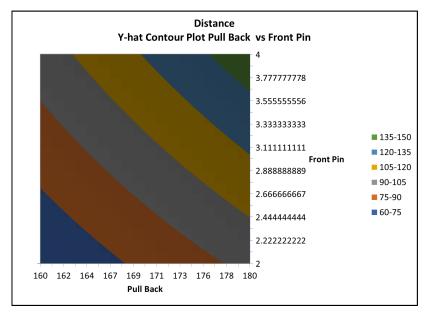
<u>Graphs and Optimization > Interaction, Surface, Contour Plot . . .</u>


Select the response of interest (distance in our example) and two of the input factors to plot (pull back angle and front pin in our example). Note: if there are other factors, they will be held constant at the settings specified at the right-hand side of the input dialog box



Analysis Using DOE Pro Software (Surface, Contour, Interaction Plots)

• An example of each plot is shown



academ

ASSOCIATES

© 2020

Analysis Using DOE Pro Software (Making Predictions)

- The center portion of the regression output is used for making predictions
- Type settings into the yellow highlighted area. For example, with a pull back angle equal to 170 degrees and the front pin setting at 3, the predicted distance is 99.5 inches with a standard deviation of 2.25 inches.

Factor	Name	Low	High	Exper
А	Pull Back	160	180	170
В	Front Pin	2	4	3

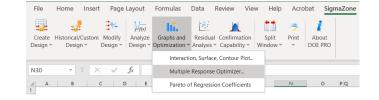
	Multi	ple Respons	e Prediction				
	99% Confidence Interval						
	Y-hat	S-hat	Lower Bound	Upper Bound			
Distance	99.5000	2.2500	92.750	106.250			

The 99% confidence interval is for individual launches.

This says that 99% of the launches at this setting should fall between 92.75 and 106.25 inches. This is a prediction for the "center point", and should always be tested to ensure the assumption of a linear model is valid!!

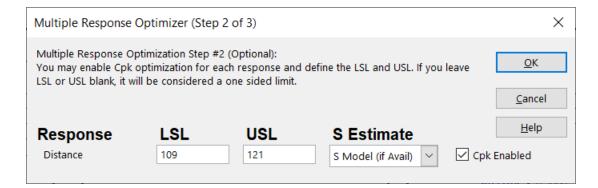
What is the predicted launch distance if we used a pull back angle of 175 inches and a front pin setting of 2?

Name	Low	High	Exper
Pull Back	160	180	175
Front Pin	2	4	2
	Pull Back	Pull Back 160	Pull Back 160 180


		Multi	ple Respons	e Prediction				
				99% Confide	ence Interval			
		Y-hat	S-hat	Lower Bound	Upper Bound			
C	Distance	86.0000	2.8750	77.375	94.625			

Analysis Using DOE Pro Software (Optimization)

 To determine optimum settings for the factors in order to meet goals, from the SigmaZone (DOE Pro) ribbon, select:


<u>Graphs and Optimization > Multiple Response Optimizer . . .</u>

• **Step 1:** Specify the factor ranges. If a factor can assume any value on a continuous scale, leave a checkmark in the "Continuous" box. If only integer settings are allowed, such as for the front pin setting, be sure to uncheck the "Continuous" box for those factors.

Multiple Respo	nse Optimizer (S	tep 1 of 3)		×
Multiple Respo	nse Optimization	Step #1:	<u>O</u> K	
For each factor information.	r enter the low, hig	h, and continuous	<u>C</u> ancel	
Name	Low	High	Help	
Pull Back	160	180	Continuous	
Front Pin	2	4	Continuous	

 Step 2: If you have one or more spec limits, then check the box "Cpk Enabled" and input the spec limit(s). This will allow for Cpk optimization in the next step.

Analysis Using DOE Pro Software (Optimization) (cont.)

• Step 3: Specify the constraints for optimization.


- For the <u>Model</u>, you can choose y-hat, s-hat, and Cpk (if there are spec limits)
- For the <u>type of optimization</u>, you can choose to maximize, minimize, make >=, make <=, or make equal to a particular value.
- Click "Add Constraint" to add a constraint for the optimization. When finished, click "Optimize" to see the optimal values. Click on "Optimize Again" to see if there are other optimal settings.

Notes:

- You can have multiple constraints
- Don't ignore information in any s-hat model (example: Suppose we just ask to hit a target distance of 115. Try it! There are 2 options, but is one better for reducing variation?)
- Constraints can compete against each other.
 Weights can be added, optionally, for importance.
- Simpler is better in terms of the number of constraints. For example, rather than asking to hit a target distance and minimize standard deviation, ask to maximize Cpk (or make the Cpk at least a certain value). Cpk considers both the mean and the standard deviation!

iurupie response	Optimizer (Step 3 of 3) -	Constraint Euriof		
Current Constraints				
Constraint Definition	s		<u>R</u> emove	Constraint
Response	Distance	~	- 01	timize
Model T	ype Optimization Targe	t Value Weight		annize
Y-hat 🗠 =	~ 115	50 ~		
	Add Constraint			
	Add Constraint		<u>H</u> elp	<u>C</u> ancel
Optimal Input Setting	5			
	Model	Туре Ор	otimization	
	Y-hat 🗸	=	\sim	
		Max = 14	4 ^	
	Y-hat 🔨	Min = 62		
	S-hat	>=		
	Cpk	<=		

Analysis Using DOE Pro Software (Optimization) (cont.)

- Step 4: Determine Optimum settings.
 - Click "Optimize" to see the optimal input settings
 - Sometimes there can be more than one combination to achieve the desired constraints, so click "Optimize Again" to check if there are other settings (sometimes you may have to do this more than once)

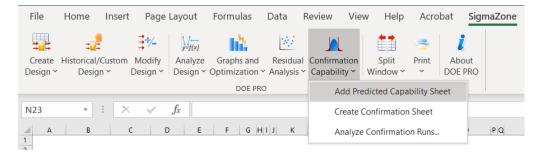
Distance: Max Cpk -	- Weight=50			,
Constraint Definition Response	s Distance	~	<u>R</u> emove Constrai	nt
Model T	ype Optimization	Weight	<u>O</u> ptimize	
	ax = 1.03954719 ~	50 ~		
	<u>A</u> dd Constraint		Help Can	cel
Optimal Input Setting	s			
- Ferrier - Ferrier - Eerrie				\sim

• Step 5: Copy the optimal settings to the worksheet

 Once you have your optimal settings, click "Settings to Worksheet" to copy these settings into the prediction area of the regression output, to see the predicted values.

Multiple Response Optimizer (Step 3 of 3) - Constraint Editor Current Constraints and Answers Distance: Max Cpk Weight=50 RESULT = 1.040 (50 of 50)		×
Constraint Definitions		
Response Distance	-	<u>O</u> ptimize Again
Model Type Optimization Weight Cpk V Max = 1.03954491 V 50 V	- 1	Settings To <u>W</u> orksheet
Add Constraint		<u>H</u> elp <u>C</u> ancel
vptimal Input Settings vull Back = 167.391304347826 ront Pin = 4		^ ~

Factor	Name	Low	High	Exper
А	Pull Back	160	180	167.3913043
В	Front Pin	2	4	4


Multiple Response Prediction						
			99% Confide	ence Interval		
	Y-hat	S-hat	Lower Bound	Upper Bound		
Distance	115.0000	1.9239	109.228	120.772		

Analysis Using DOE Pro Software (Predicted Capability)

 To add a predicted capability sheet for the proposed settings, from the SigmaZone U(DOE Pro) ribbon, select:

Confirmation Capability > Add Predicted Capability Sheet

Using these settings . . .

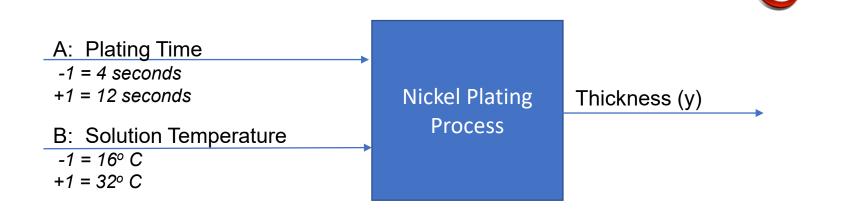
Factor	Name	Low	High	Exper
А	Pull Back	160	180	167.3913043
В	Front Pin	2	4	4

Multiple Response Prediction						
	99% Confidence Interval					
	Y-hat S-hat Lower Bound Upper Bour					
Distance	115.0000	1.9239	109.228	120.772		

The predicted capability . .

Process Capability Analysis					
Of Confirmation Runs					
Distance					
Upper Spec Limit	121				
Lower Spec Limit	109				
Mean	115				
Standard Deviation	1.923913043				
Sigma Capability	4.408				
Cpk	1.0395				
Ср	1.0395				
Defects Per Million	1816.853				

The predicted capability for the other setting which would hit the target of 115 inches.

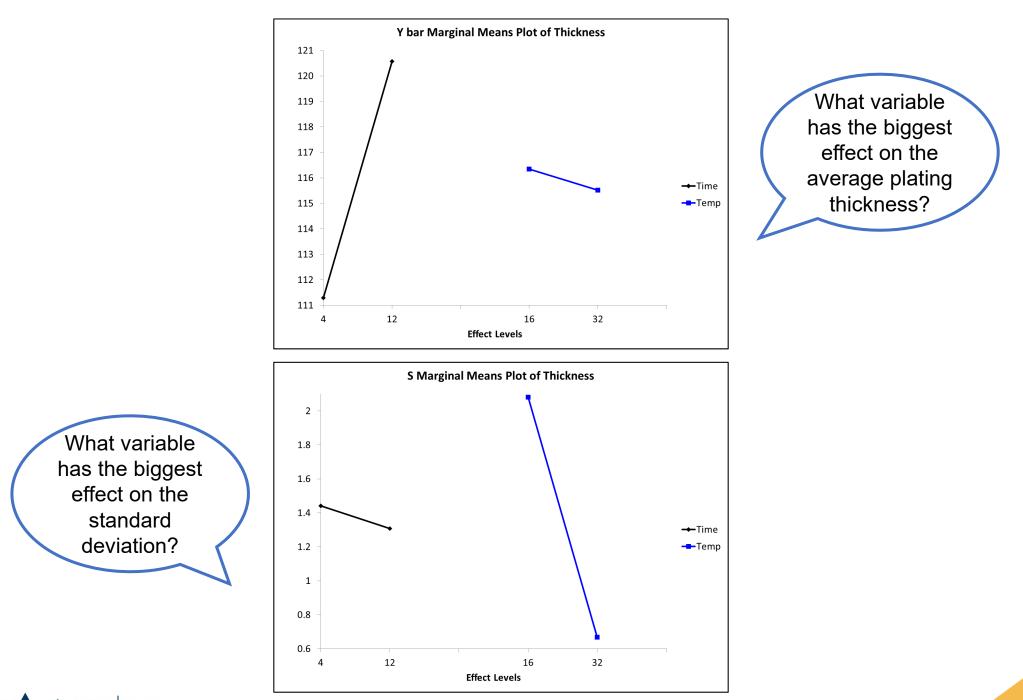

Factor	Name	Low	High	Exper
А	Pull Back	160	180	177.9487179
В	Front Pin	2	4	3

Process Capability Analysis Of Confirmation Runs				
Distance				
Upper Spec Limit	121			
Lower Spec Limit	109			
Mean	115			
Standard Deviation	3.243589744			
Sigma Capability	3.019			
Cpk	0.6166			
Ср	0.6166			
Defects Per Million	64342.039			

"All models are wrong, but some are useful." - George Box

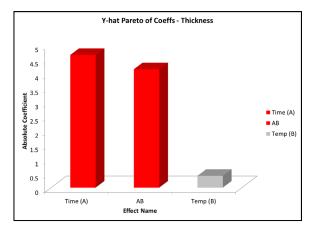
Full Factorial Design: Nickel Plating

- In a nickel plating process, a team was experiencing issues with plating thickness.
- They set up a full factorial experiment to study the effects of plating time and solution temperature on the resulting plating thickness. The results of their experiment are shown below. The requirement for plating thickness is 110 +/- 5 microns.



Factor	А	В	Thickness						
Row #	Time	Temp	Y1	Y2	Y3	Y4	Y5	Y bar	S
1	4	16	116.1	116.9	112.6	118.7	114.9	115.84	2.277718
2	4	32	106.7	107.5	105.9	107.1	106.5	106.74	0.60663
3	12	16	116.5	115.5	119.2	114.7	118.3	116.84	1.883614
4	12	32	123.2	125.1	124.5	124	124.7	124.3	0.731437

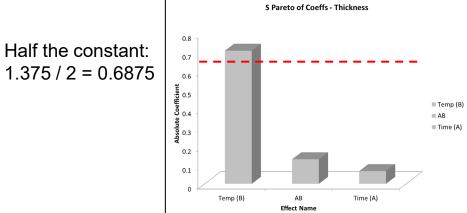
Nickel Plating (Marginal Means Plots)


academy

ASSOCIATES

© 2020

Nickel Plating (Regression Analysis)

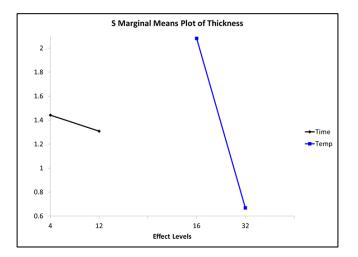

Y-hat Model		Thickness			
		Inickness	•		ive
Factor	Name	Coeff	P(2 Tail)	Tol	Active
Const		115.93	0.0000		
А	Time	4.640	0.0000	1	Х
В	Temp	-0.41000	0.2548	1	Х
AB		4.140	0.0000	1	Х
	R ²	0.9527			
	Adj R ²	0.9438			
	Std Error	1.5523			
	F	107.4449			
	Sig F	0.0000			
	F LOF	NA			
	Sig F _{LOF}	NA			
	Source	SS	df	MS	
	Regression	776.7	3	258.9	
	Error	38.6	16	2.4	
	Error _{Pure}	38.6	16	2.4	
	Error LOF	0.0	0	NA	
	Total	815.3	19		

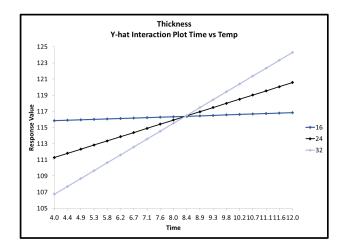
Factor	Name	Low	High	Exper	ľ
А	Time	4	12	8	
В	Temp	16	32	24	

Multiple Response Prediction						
			99% Confide	ence Interval		
	Y-hat	S-hat	Lower Bound	Upper Bound		
Thickness	115.9300	1.3748	111.805	120.055		

S-hat Model					
		Thickness		_	_
					Active
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		1.375	NA		
А	Time	-0.06732	NA	1	Х
В	Temp	-0.70582	NA	1	Х
AB		0.12973	NA	1	Х
	_				
	R ²	1.0000			
	Adj R ²	NA			
	Std Error	NA			
	F	NA			
	Sig F	NA			
	F LOF	NA			
	Sig F _{LOF}	NA			
	Source	SS	df	MS	
	Regression	2.1	3	0.7	
	Error	0.0	0	NA	
	Error _{Pure}	NA	0	NA	
	Error LOF	NA	0	NA	
	Total	2.1	3		

1.375 / 2 = 0.6875


Nickel Plating (Reduced Model)


Y-hat Model		Thickness			
		Inickness	•	•	Active
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		115.93	0.0000		
А	Time	4.640	0.0000	1	Х
В	Temp	-0.41000	0.2548	1	Х
AB		4.140	0.0000	1	Х
	R ²	0.9527			
	Adj R ²	0.9438			
	Std Error	1.5523			
	F	107.4449			
	Sig F	0.0000			
	F LOF	NA			
	Sig F _{LOF}	NA			
	Source	SS	df	MS	
	Regression	776.7	3	258.9	
	Error	38.6	16	2.4	
	Error _{Pure}	38.6	16	2.4	
	Error LOF	0.0	0	NA	
	Total	815.3	19		

Factor	Name	Low	High	Exper
А	Time	4	12	8
В	Temp	16	32	24

Multiple Response Prediction								
			99% Confide	ence Interval				
	Y-hat S-hat Lower Bound Upper Bound							
Thickness	115.9300	1.3748	111.805	120.055				

S-hat Model					
		Thickness			
					Active
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		1.375	0.0056		
В	Temp	-0.70582	0.0208	1	Х
	_				
	R ²	0.9589			
	Adj R ²	0.9383			
	Std Error	0.2067			
	F	46.6416			
	Sig F	0.0208			
	F LOF	NA			
	Sig F _{LOF}	NA			
	Source	SS	df	MS	
	Regression	2.0	1	2.0	
	Error	0.1	2	0.0	
	Error _{Pure}	0.1	2	0.0	
	Error LOF	0.0	0	NA	
	Total	2.1	3		

Nickel Plating (Optimization)

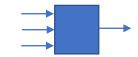
- Using the Optimizer in DOE Pro, the following optimal settings were determined:
 - Plating Time (5.5 seconds)
 - Solution Temperature (32° C)

Multiple Respor	nse Optimizer (St	ep 1 of 3)		×	Multiple Respon	nse Optimize	r (Step 2 c	of 3)				×		
	nse Optimization S enter the low, high		<u>O</u> K <u>C</u> ancel		Multiple Respons You may enable C LSL or USL blank,	Cpk optimizati	on for each	response a	and define t nit.	he LSL and USL. If yo	ou leave	<u>O</u> K <u>C</u> ancel	S	Recall: pecs are 110 +/- 5
Name Time Temp	Low 4 16	High 12 32	Help Continuous Continuous		Response Thickness	LS 105	_	USL 115		S Estimate Model (if Avail)] ⊡ ct	<u>H</u> elp ok Enabled		microns
Multiple Respons	se Optimizer (St	ep 3 of 3) - Con	straint Editor		×	Factor	Name	Low	High	Exper				
Current Constrair	nts and Answers						T			5 405400600				
Thickness: Max C	pk Weight=50	RESULT = 2.491	(50 of 50)		^	B	Time Temp	4 16	12 32	5.485193622 32				
							Multip	ole Respons	e Prediction					
					~		Y-hat	S-hat	Lower Bou	fidence Interval nd Upper Bound				
Constraint Definiti Response	Thicknes	c		<u>R</u> emov	e Constraint	Thickness	110.0000	0.6690	107.993	112.007				
Model	Type Optimizatio Max = 2.4911019	n	Weight	/	nize Again To <u>W</u> orksheet				Factor	Name	Low	High	Exper	
	Add Cor	octraint							А	Time	4	12	5.5	Rounding
		Istraint		<u>H</u> elp	<u>C</u> ancel				В	Temp	16	32	32	Time to 5
Optimal Input Setti													\square	second
Time = 5.48519362 Temp = 32	2180780				\sim					Multiple	Respon	se Prediction		7
								ſ		Y-hat	S-hat		ence Interval Upper Bound	1

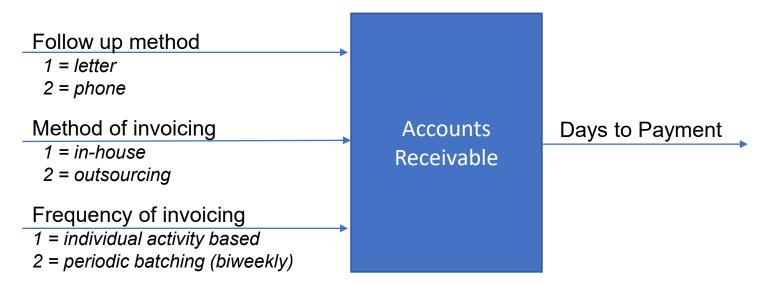
Thickness

110.0325

0.6690


108.025

112.040



of .5

Full Factorial Design with 3 Factors

- DOE is applicable any time we are studying how inputs affect one or more outputs. It is not just for manufacturing processes, but applies in the transactional or service industry, design and development, software testing, and beyond
- Consider an accounts receivable process, where cash flow is a major issue. Reducing the time it takes for a customer to pay an invoice is crucial.
- A company found that on average it was taking well over 150 days to get paid, and they had more than \$130 million over 30 days past due (and \$67 million of that over 60 days past due). Using PF/CE/CNX/SOP, they were able to cut the receivable time almost in half (by 74 days) by removing bottlenecks. For further improvement, they brainstormed other variables affecting payment times and set up an experiment to focus on 3 of these variables as shown.

Accounts Receivable DOE

• They set up the following 8-run full factorial experiment with 6 replications. Data was collected over a 6-month period.

Factor	А	В	С	Days to P	ay						
Row #	Follow Up	Method	Frequency	Y1	Y2	Y3	Y4	Y5	Y6	Y bar	S
1	1	1	1	49	46	56	59	47	44	50.167	5.981
2	1	1	2	79	84	86	78	86	91	84.000	4.858
3	1	2	1	51	55	64	53	63	61	57.833	5.529
4	1	2	2	93	96	81	79	80	88	86.167	7.250
5	2	1	1	47	46	44	51	40	49	46.167	3.869
6	2	1	2	59	61	69	62	54	66	61.833	5.269
7	2	2	1	46	52	49	55	59	42	50.500	6.156
8	2	2	2	62	61	64	68	69	60	64.000	3.742

ntal Trials		
Follow Up Method	Method of Invoicing	Frequency of Invoicing
letter	in-house	individual activity based
letter	in-house	periodic batching (bi-weekly)
letter	outsource	individual activity based
letter	outsource	periodic batching (bi-weekly)
phone	in-house	individual activity based
phone	in-house	periodic batching (bi-weekly)
phone	outsource	individual activity based
phone	outsource	periodic batching (bi-weekly)
	Up Method letter letter letter letter phone phone	Follow Up MethodMethod of InvoicingMethodin-houseletterin-houseletteroutsourceletteroutsourceletteroutsourcephonein-housephoneoutsourcephoneoutsourcephoneoutsourcephoneoutsource

Data file: DOE 3 factor accounts receivable.xlsx

Practice using DOE Pro to Analyze Data

Open the data file and analyze the data. Answer the following questions.

- 1. Does anything have a significant effect on the days to pay? If so, what? Which of the three main variables has the biggest impact?
- 2. Does anything have a significant effect on the variation (standard deviation) in payment time? If so, what?
- 3. Review the marginal means plot for Days to Pay (y-hat) and the interaction plot(s) for any significant interaction(s). What do these suggest about reducing the days to pay?
- 4. Confirm what the graphs suggest by using the optimizer in DOE Pro. What is the optimal setting for reducing days to pay?
 - A: Follow up method(1 = letter, 2 = phone)B: Method of invoicing(1 = in-house, 2 = outsourcing)C: Frequency of invoicing(1 = individual activity based, 2 = periodic batching)
- 5. Use the optimal settings to predict the payment time. _____ days
- 6. If the upper spec limit (goal) is to never exceed 60 days, what is the expect dpm (defects per million) at this new setting?

Accounts Receivable DOE (Regression)

Y-hat Model					
		Days to Pay			
					ive
Factor	Name	Coeff	P(2 Tail)	Tol	Active
Const		62.583	0.0000		
А	Follow Up	-6.958	0.0000	1	Х
В	Method	2.042	0.0131	1	Х
С	Frequency	11.417	0.0000	1	Х
AB		-0.41667	0.5989	1	Х
AC		-4.125	0.0000	1	Х
BC		-0.95833	0.2298	1	Х
ABC		0.41667	0.5989	1	Х
	R ²	0.8907			
	Adj R ²	0.8715			
	Std Error	5.4444			
	F	46.5464			
	Sig F	0.0000			
	FLOF	NA			
	Sig FLOF	NA			

Factor	Name	Low	High	Exper
А	Follow Up	1	2	1.5
В	Method	1	2	1.5
С	Frequency	1	2	1.5

Multiple Response Prediction						
	Y-hat	S-hat		ence Interval Upper Bound		
Days to Pay	62.5833	5.3317	46.588	78.578		

S-hat Model				
		Days to Pay		
Factor	Name	Coeff	P(2 Tail) To	- Active
Const		5.332	NA	
А	Follow Up	-0.57268	NA 1	Х
В	Method	0.33755	NA 1	Х
С	Frequency	-0.05186	NA 1	Х
AB		-0.14758	NA 1	Х
AC		-0.20162	NA 1	Х
BC		-0.12141	NA 1	Х
ABC		-0.83244	NA 1	Х
	R ²	1.0000		
	Adj R ²	NA		
	Std Error	NA		
	F	NA		
	Sig F	NA		
	FLOF	NA		
	Sig F _{LOF}	NA		

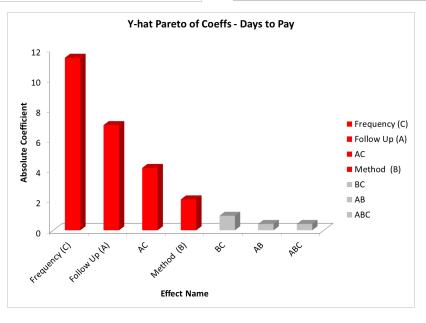
• Reduced model (insignificant terms removed)

Y-hat Mode	I				
		Days to Pay	•	•	Active
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		62.583	0.0000		
А	Follow Up	-6.958	0.0000	1	Х
В	Method	2.042	0.0119	1	Х
С	Frequency	11.417	0.0000	1	Х
AC		-4.125	0.0000	1	Х
	R ²	0.8851			
	Adj R ²	0.8744			
	Std Error	5.3839			
	F	82.7736			
	Sig F	0.0000			
	FLOF	0.6832			
	Sig FLOF	0.5676			

Name	Low	High	Exper
Follow Up	1	2	1.5
Method	1	2	1.5
Frequency	1	2	1.5
	Follow Up Method	Follow Up 1 Method 1	Follow Up 1 2 Method 1 2

Multiple Response Prediction				
		99% Confidence Interval		
	Y-hat	S-hat	Lower Bound	Upper Bound
Days to Pay	62.5833	5.3317	46.588	78.578

S-hat Model				
		Days to Pay	, 	۰ ٦
Factor	Name	Coeff	P(2 Tail) Tol	Activ
Const		5.332	0.0000	
	_			
	R ²	0.0000		
	Adj R ²	0.0000		
	Std Error	1.1782		
	F	NA		
	Sig F	NA		
	FLOF	NA		
	Sig F _{LOF}	NA		



Accounts Receivable DOE (Regression) (cont.)

Marginal Means Plots

Y bar Marginal Means Plot of Days to Pay Days to Pay Y-hat Interaction Plot Follow Up vs Frequency 75 Constants: Method = 1 1 = In-house 85 70 80 75 65 **Response Value** 09 2 = Periodic Batch Frequency -Follow Up ---Method **--**1 60 +1.5 --2 55 55 50 1 = Individual 50 45 2 2 1 2 1 1.0 1.1 1.1 1.2 1.2 1.3 1.3 1.4 1.4 1.5 1.6 1.6 1.7 1.7 1.8 1.8 1.9 1.9 2.0 1 Follow Up Effect Levels 1 = Letter 2 = Phone

 Pareto of Regression Coefficients

Interaction Plot (AC) (Follow-up x Frequency)

Optimized Settings

- Follow-Up = 2 (by phone)
- Method of Invoicing = 1 (in-house)
- Frequency of Invoicing = 1 (individual activity based)

•	Predicted Days to Pay = 46	5.29
---	----------------------------	------

Factor Name High Low Exper 2 А Follow Up 1 2 В Method 1 2 1 С 2 1 1 Frequency

Multiple Response Prediction						
	99% Confidence Interval					
	Y-hat	S-hat	Lower Bound	Upper Bound		
Days to Pay	46.2917	5.3317	30.297	62.287		

- Assuming an upper spec limit of 60 days, the predicted capability shows a defects per million (dpm) = 5,068 (so we'd expect to exceed the 60 days only about 0.5% of the time!
- Of course, confirmation is critical! The company did further pilot testing and the results were validated.
- The company's finance department has shown that this reduction in time until payment equates to more than \$450,000 savings annually due to improved cash flow.

Process Capability Analysis				
Of Confirmation Runs				
Days to Pay				
60				
46.29166667				
5.331693566				
4.071				
0.8570				
NA				
5068.759				

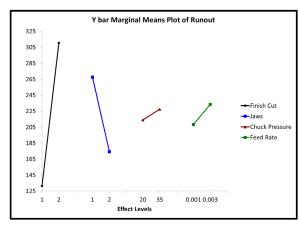
Case Study: Full Factorial Design with 4 Factors (Understanding Industrial Designed Experiments, Pages 8-218 through 8-228)

- In a precision machining process, a machined lathe part used in a critical assembly had to meet a circular runout tolerance of 500 micro inches. A company was having issues meeting this tolerance, averaging 550 micro inches.
- The team brainstormed possible contributors to excessive runout. The factors were related to the tool cutting pressure and the method of holding the part during machining. After further brainstorming factors that could affect the tool cutting pressure and method of holding the part, they identified the following 4 factors which were varied using a 16-run full factorial design with 3 replicates:

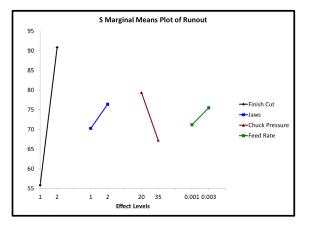
	Low	<u>High</u>
– A: Finish Cut	yes (1)	no (2)
– B: Jaws (geometry)	old style (1)	new style (2)
– C: Chuck Pressure	20 psi	35 psi
 D: Feed Rate 	0.001"/Rev	0.003"/Rev

- The goal of the experiment was to answer the following questions:
 - Which factors, if any, have a significant effect on the runout?
 - Which factors, if any, have a significant effect on the variability?
 - What are the best settings to minimize both runout and variation, while ideally keeping the feed rate high? (USL for runout = 500)

4 Factor Full Factorial (Circular Runout)

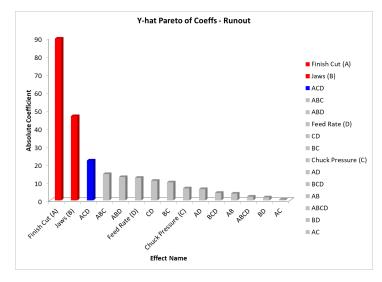

• The experiment and resulting data:

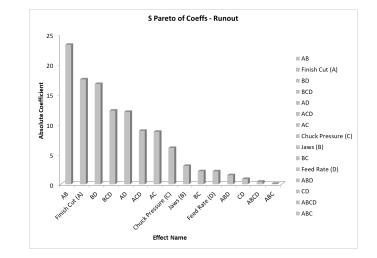
Factor	Α	В	С	D	Runout				
Row #	Finish Cut	Jaws	Chuck Pressure	Feed Rate	Y1	Y2	Y3	Y bar	S
1	1	1	20	0.001	50	300	170	173.3333	125.0333
2	1	1	20	0.003	180	220	100	166.6667	61.10101
3	1	1	35	0.001	140	180	300	206.6667	83.26664
4	1	1	35	0.003	140	200	200	180	34.64102
5	1	2	20	0.001	40	60	20	40	20
6	1	2	20	0.003	200	50	100	116.6667	76.37626
7	1	2	35	0.001	120	60	60	80	34.64102
8	1	2	35	0.003	100	80	80	86.66667	11.54701
9	2	1	20	0.001	280	400	450	376.6667	87.36895
10	2	1	20	0.003	320	390	390	366.6667	40.41452
11	2	1	35	0.001	220	290	300	270	43.58899
12	2	1	35	0.003	500	350	350	400	86.60254
13	2	2	20	0.001	180	260	340	260	80
14	2	2	20	0.003	120	380	140	213.3333	144.6836
15	2	2	35	0.001	200	370	210	260	95.39392
16	2	2	35	0.003	300	500	210	336.6667	148.4363


4 Factor Full Factorial (Circular Runout) (Initial Regression)

Y-hat Model					
		Runout			
					Active
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		220.83	0.0000		
А	Finish Cut	89.583	0.0000	1	Х
В	Jaws	-46.667	0.0005	1	X
С	Chuck Pressure	6.667	0.5851	х	Х
D	Feed Rate	12.500	0.3088	1	Х
AB		3.750	0.7584	1	Х
AC		-0.41667	0.9727	1	Х
AD		6.250	0.6087	1	Х
BC		10.000	0.4142	1	X
BD		1.667	0.8912	1	Х
CD		10.833	0.3768	1	Х
ABC		14.583	0.2365	1	Х
ABD		-12.917	0.2932	1	Х
ACD		22.083	0.0770	1	Х
BCD		-4.167	0.7326	1	Х
ABCD		2.083	0.8642	1	Х
	R ²	0.7121			
	Adj R ²	0.5772			
	Std Error	83.7407			
	F	5.2779			
	Sig F	0.0000			
	FLOF	NA			
	Sig F _{LOF}	NA			
l .					

Factor	Name	Low	High	Exper
А	Finish Cut	1	2	1.5
В	Jaws	1	2	1.5
С	Chuck Pressure	20	35	27.5
D	Feed Rate	0.001	0.003	0.002


Multiple Response Prediction					
99% Confidence Interval					
	Y-hat	S-hat	Lower Bound	Upper Bound	
Runout	220.8333	73.3184	0.878	440.789	



	S-hat Model					
			Runout			
						Active
	Factor	Name	Coeff	P(2 Tail)	Tol	Ac
	Const		73.318	NA		
С	A	Finish Cut	17.493	NA	1	Х
С	В	Jaws	3.066	NA	1	Х
С	С	Chuck Pressure	-6.054	NA	1	Х
С	D	Feed Rate	2.157	NA	1	Х
	AB		23.251	NA	1	Х
	AC		8.748	NA	1	Х
	AD		12.066	NA	1	Х
	BC		2.174	NA	1	Х
	BD		16.719	NA	1	Х
	CD		0.88520	NA	1	Х
	ABC		-0.08124	NA	1	Х
	ABD		-1.511	NA	1	Х
	ACD		8.906	NA	1	Х
	BCD		-12.274	NA	1	Х
	ABCD		-0.42701	NA	1	Х
		R ²	1.0000			
		Adj R ²	NA			
		Std Error	NA			
		F	NA			
		Sig F	NA			
		F _{LOF}	NA			
		Sig F _{LOF}	NA			

4 Factor Full Factorial (Circular Runout) (Reduced Regression)

Y-hat Model					
		Runout			
					Active
Factor	Name	Coeff	P(2 Tail)	Tol	Ac
Const		220.83	0.0000		
A	Finish Cut	89.583	0.0000	1	X
В	Jaws	-46.667	0.0002	1	Х
	R ²	0.6282			
	Adj R ²	0.6117			
	Std Error	80.2531			
	F	38.0201			
	Sig F	0.0000			
	F LOF	0.1027			
	Sig F _{LOF}	0.7501			

Factor	Name	Low	High	Exper
A	Finish Cut	1	2	1.5
В	Jaws	1	2	1.5
С	Chuck Pressure	20	35	27.5
D	Feed Rate	0.001	0.003	0.002

Multiple Response Prediction					
			99% Confide	ence Interval	
	Y-hat	S-hat	Lower Bound	Upper Bound	
Runout	220.8333	73.3184	0.878	440.789	

S-hat Model		Runout			
				1	ič Š
Factor	Name	Coeff	P(2 Tail)	Tol	Active
Const		73.318	0.0000		
	R ²	0.0000			
	Adj R ²	0.0000			
	Std Error	41.7856			
	F	NA			
	Sig F	NA			
	F LOF	NA			
	Sig F _{LOF}	NA			

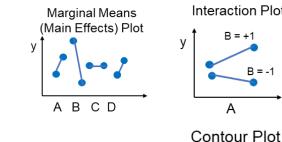
4 Factor Full Factorial (Optimization and Confirmation)

- Optimization was set to minimize y-hat (since nothing was significant for s-hat)
- Constraints: Chuck pressure and feed rate were preferred to be kept at their current settings (35 psi and 0.003"/rev)

					Factor	Name	Low	High	Exper]	
Multiple Response Optimizer (Step 1 of 3)								Optimized settings used for			
Multiple Respons	o Optimization St	ton #1:	01		А	Finish Cut	1	2	1	confirmation:	
	Multiple Response Optimization Step #1: <u>QK</u>			В	Jaws	1	2	2			
For each factor en information.	nter the low, high	, and continuous	<u>C</u> ancel		С	Chuck Pressure	20	35	35	A: Finish Cut yes (1)	
Name	Low	High	Help		D	Feed Rate	0.001	0.003	0.003	B: Jaws (geometry) new style	(2)
Finish Cut	1	2	Continuous							C: Chuck Pressure 35 psi	~ /
Jaws	1	2	Continuous								
Chuck Pressure	35	35	Continuous			Multipl	e Response Pr	ediction		D: Feed Rate 0.003"/R	ev
Feed Rate	0.003	0.003	Continuous					99% Confid	ence Interval		
						Y-hat	S-hat	Lower Bound	Upper Bound		
					Runout	84.5833	73.3184	-135.372	304.539		

- The predicted circular runout was 84.58 micro inches, and the predicted standard deviation was 73.3 micro inches
- A confirmation run of 18 parts was conducted with the finish cut added and the new style jaws (chuck pressure was held at 35psi and the feed rate was held at 0.003" per revolution). The confirmation run yielded an average runout of 66 micro inches with a standard deviation of 48 micro inches, both in reasonable agreement with the predicted values (and slightly better!).

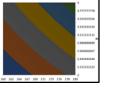
Key Takeaways

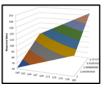


• As a review, you may want to pause the video at this point and summarize the key learnings from this session, at least from a high-level view. When you are finished, resume the video.

Key Takeaways

- Full factorial designs test all possible combinations
- Full factorial designs are orthogonal (balanced), which allows us to independently ٠ estimate effects y
- Testing at two levels produces a linear model; confirmation at or near the ٠ center is critical to validate that assumption
- Full factorial designs allow us to study all possible interactions ٠
- An interaction between two factors means the effect that one factor is having on the ٠ response, depends on the setting of another. It is a "combination" effect.
- When analyzing the results from a DOE, always look at both the graphical and ٠ statistical analysis
- Helpful graphs include: ٠
 - Marginal means (main effects) plots
 - Pareto of regression coefficients
 - Interaction, surface, and/or contour plots
- Statistical analysis (regression) items to review:
 - p-values (what should be included in the prediction model?)
 - R² and adjusted R² of the model


Interaction Plot Pareto Plot


x +1

-1

Surface Plot

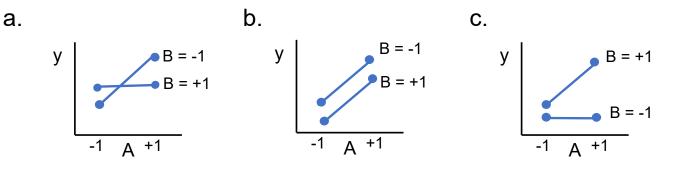
A

Key Takeaways (cont.)

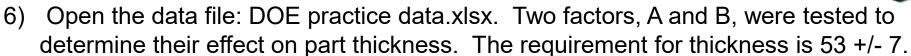
- When using software such as DOE Pro, the analysis is done in coded units
 - Low setting (-1) High setting (+1)
 - DOE Pro automatically codes and uncodes for us
- Coding improves orthogonality when estimating interaction effects, and allows us to compare the size of coefficients since everything is on the same scale
- When removing terms from a model
 - Remember the rule of hierarchy: If an interaction or higher order term in significant, keep all main effects involved in that term in the model
 - Re-run the regression to update the model
- When optimizing, don't forget to consider s-hat and how you can reduce variation (DOE Pro will allow for Cpk optimization, which considers both the mean and standard deviation)
- Always run confirmation (validation) tests. As George Box said: "All models are wrong, but some are useful." The useful ones are the ones that confirm!

Supplemental Material

- Suggested Reading:
 - Lean Six Sigma: A Tools Guide by Adams, Kiemele, Pollock and Quan (pp. 139-146)
 - Basic Statistics Tools for Continuous Improvement by Kiemele, Schmidt and Berdine, 4th edition (pp. 8-9 – 8-27)
 - Design for Six Sigma: The Tool Guide for Practitioners by Reagan and Kiemele (pp. 79-100)
 - Understanding Industrial Designed Experiments by Schmidt and Launsby, 4th edition (pp. 2-1 – 2-57, 3-1 – 3-9)
 - Air Academy's app: Six Sigma Quick Tools


- SPC XL[™] software training tutorials:
 - <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>
- The data files for this session can be downloaded from the site where you are accessing this course

Additional Practice / Review Questions


- In a full factorial design, if we want to test 3 factors at two settings for each, how many total runs (or combinations) will there be to test?
- 2) Which of the following pictures indicates an interaction between factors A and B? (select all that apply)

- 3) In picture a above, if the goal is to maximize y, what is the best setting for factors A and B?
- 4) When using p-values, what is the rule of thumb for determining significance and deciding which terms to include in the model?
- 5) In a 2-level design, if there are no p-values when analyzing s-hat, what is the approximate rule of thumb for determining significance and deciding which terms to include in the model?

Additional Practice / Review Questions

А	В	С	D	E	F	G	Н		J
Factor	А	В		Thickness					
Row #	А	В		Y1	Y2	Y3		Y bar	S
1	5	70		39	47	36		40.66667	5.686241
2	5	90		65	60	54		59.66667	5.507571
3	10	70		78	75	76		76.33333	1.527525
4	10	90		44	46	48		46	2

- a) What are the significant effects for the average part thickness (y-hat)?
- b) What are the significant effects for the standard deviation in part thickness (s-hat)?
- c) Assume factors A and B can take on any value, on a continuous scale, within the ranges tested. Recommend the best settings for A and B to optimize part thickness. (the requirement for thickness is 53 +/- 7)
- e) What is predicted Cp, Cpk, and defects per million (dpm) using these recommended settings?
 Cp = _____ Cpk = ____ dpm = _____

We can help... Connect With Us

Remote Project Coaching

There are times when help outside your organization is needed. When that time comes, benefit from a partner that is experienced, tested, and trusted.

Expert coaching is one of the Top Five Best Practices for generating step change in project execution, as well as enhanced return on investment. We can work remotely with your organization to provide coaching support.

There's an app for that! Six Sigma Quick Tools

