

Three Level Designs

Copyright © 2020

All rights reserved. Do not reproduce.

www.airacad.com

User Agreement and Copyright Information

- This recording and the accompanying guide contain copyrighted and proprietary content of Air Academy Associates, LLC. You are authorized to use this material for personal reference, but not for any commercial use. You may not modify, license, sub-license, distribute, copy, translate or create derivative works based on this guide, in part or in whole, without permission from Air Academy Associates.
- Other copyright information:
 - Six Sigma is a service mark of Motorola, Inc. Microsoft[®] and Excel[®] are registered trademarks of Microsoft Corporation in the United States and in other territories.
 - SPC XL[™] and DOE Pro XL[™] are copyright SigmaZone.com and Air Academy Associates, LLC. You may not copy, modify, distribute, display, license, reproduce, sell or use commercially any screen shots or any component contained therein without the express written permission of SigmaZone.com and Air Academy Associates, LLC. All rights reserved. SigmaZone.com may be contacted at <u>www.SigmaZone.com</u>. Air Academy Associates may be contacted at <u>www.airacad.com</u>.
 - Quantum XL 2016[™] and Pro-Test[™] are copyright SigmaZone.com. You may not copy, modify, distribute, display, license, reproduce, sell or use commercially any screen shots or any component contained therein without the express written permission of SigmaZone.com. All rights reserved. SigmaZone.com may be contacted at <u>www.SigmaZone.com</u>.

Three Level Designs

In this session, we will discuss:

- Types of Input Factors: Qualitative versus Quantitative
- KISS Guidelines Flowchart
- Three Level Designs
 - Full Factorial (3^k Designs)
 - ⁻ L₁₈ Screening Designs
 - Response Surface Modeling Designs
 - Box Behnken Design
 - Central Composite Design (CCD)

- A list of supplemental material and additional practice/review questions for this session are provided at the end of this presentation
- You can download the pdf of this presentation, along with any supporting data files, on the site where you are accessing this course

Input Factor Types and Levels

- Types of Input Factors
 - Qualitative (Input factor significance)
 - Quantitative (Models!)
 - Mixed factors (Both)
- Number of levels for each input factor
 - Two levels
 - Three levels
 - Mixed levels

Y-hat Surface Plot

KISS Guidelines for Choosing an Experimental Design

NOTE 1: Sample size (n_{reps}) is for 95% confidence in \hat{s} and 99.99% confidence in \hat{y} .

NOTE 2: $(n_{reps}/2)$ will provide 75% confidence in \hat{s} and 95% confidence in \hat{y} .

NOTE 3: The 12 Run Plackett-Burman or L12 is very sensitive to large numbers of interactions. If this is the case, you would be better off using the 16 Run Fractional Factorial or a smaller number of variables in 2 or more full factorial experiments.

NOTE 4: For more complete 2-level design options, see next page.

DOE PRO XL Three Level Designs

DOE PRO XL follows the KISS Guidelines!

• DOE PRO XL > Create Design > Computer Aided ...

KISS Guidelines for Choosing and Experimental Design

NOTE 2: $(n_{rens}/2)$ will provide 75% confidence in \hat{s} and 95% confidence in \hat{y} .

NOTE 3: The 12 Run Plackett-Burman or L12 is very sensitive to large numbers of interactions. If this is the case, you would be better off using the 16 Run Fractional Factorial or a smaller number of variables in 2 or more full factorial experiments.

NOTE 4: For more complete 2-level design options, see next page.

Three Level Full Factorial Designs

OBJECTIVE: To test all possible combinations $(n = 3^k)$

ADVANTAGES: Can estimate all mains, all quadratics, and all linear interactions. Can mix qualitative and quantitative factors.

DISADVANTAGES: Very costly when k > 3. Very inefficient due to sparsity of high-order interactions.

Full Factorial Design Space

Factors			1	Factors			1	Factors			
Run	А	в	С	Run	Α	в	С	Run	Α	в	С
1	1	1	1	10	0	1	1	19	-1	1	1
2	1	1	0	11	0	1	0	20	-1	1	0
3	1	1	-1	12	0	1	-1	21	-1	1	-1
4	1	0	1	13	0	0	1	22	-1	0	1
5	1	0	0	14	0	0	0	23	-1	0	0
6	1	0	-1	15	0	0	-1	24	-1	0	-1
7	1	-1	1	16	0	-1	1	25	-1	-1	1
8	1	-1	0	17	0	-1	0	26	-1	-1	0
9	1	-1	-1	18	0	-1	-1	27	-1	-1	-1

27 Full Factorial Design Conditions for K=3

Name, Lo	w, High Definition Windo	WC		\times
Enter the	e name, low, and high values	for each Factor.		
Factor	Name	Low	High	<u>N</u> ext >>
A (3)	Supplier	1	3	<< <u>B</u> ack
B (3)	Temp	100	200	<u>C</u> ancel
C (3)	Pressure	50	80	
				<u>H</u> elp

Number of Replications/Responses	×
How many responses do you have?	<u>N</u> ext >>
1 ~	<< <u>B</u> ack
How many replications would you like? (Note: If using multiple responses create enough	<u>C</u> ancel
replications for the most demanding response.)	<u>H</u> elp
3	

Response Names		\times
Enter the respon for each respons	se names. You may use up to 15 characters se name.	Fi <u>n</u> ish >>
Response #1	Mixing Time	<< <u>B</u> ack
		<u>C</u> ancel

Factor	Α	В	С	Mixing Tim	e		
Row #	Supplier	Temp	Pressure	Y1	Y2	Y3	
1	3	200	80	12	12	13	
2	3	200	65	13	12	13	
3	3	200	50	14	13	13	
4	3	150	80	15	15	16 16	
5	3	150	65	15	15	16 16	
6	3	150	50	16	16	15	
7	3	100	80	15	15	16 16	
8	3	100	65	15	15	16 16	
9	3	100	50	16	16	15	
10	2	200	80	17	17	18	
11	2	200	65	18	18	17	
12	2	200	50	19	19.5	18	
13	2	150	80	18	19	18	
14	2	150	65	20	21	20	
15	2	150	50	20	20	21	
16	2	100	80	20	19	20	
17	2	100	65	20	21	21	
18	2	100	50	21	21	22	
19	1	200	80	8	8	7	
20	1	200	65	9	8	8	
21	1	200	50	9	9	8	
22	1	150	80	10	9	9	
23	1	150	65	10	9	10	
24	1	150	50	10	10	9	
25	1	100	80	9	10	10	
26	1	100	65	10	11	10	
27	1	100	50	11	11	12	

DOE PRO XL > Analyze Design > Marginal Means Plot...

DOE PRO XL > Analyze Design > Multiple Response Regression

Y-hat Model					
		Mixing Time			
					, ive
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		19.858	0.0000		
А	Supplier	2.870	0.0000	0.2000	X
В	Temp	-1.333	0.0000	0.2000	X
С	Pressure	-0.75926	0.0001	0.2000	Х
AB		-0.11111	0.2658	1	
AC		0.11111	0.2658	1	
BC		0.01389	0.8888	1	
ABC		-0.16667	0.1739	1	
AA		-7.407	0.0000	1	Х
BB		-0.65741	0.0000	1	Х
сс		-0.04630	0.7419	1	
AAB		0.08333	0.6285	0.3333	
ABB		-0.55556	0.0019	0.3333	
AAC		0.47222	0.0076	0.3333	
ACC		0.11111	0.5192	0.3333	
BBC		-0.15278	0.3761	0.3333	
BCC		0.04167	0.8087	0.3333	
	_				
	R ²	0.9848			
	Adj R ²	0.9810			
	Std Error	0.5938			
	F	259.1617			
	Sig F	0.0000			

Factor	Name	Low	High	Exper
А	Supplier	1	3	2
В	Temp	100	200	150
С	Pressure	50	80	65

	Multiple Response Prediction						
			99% Confid	ence Interval			
	Y-hat	S-hat	Lower Bound	Upper Bound			
Mixing Time	19.8580	0.5843	18.105	21.611			

S-hat Model					
		Mixing Time	_		
					ive
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		0.58425	0.0000		
А	Supplier	0.0000000	1.0000	0.2000	
В	Temp	0.02071	0.3047	0.2000	
С	Pressure	-0.02071	0.3047	0.2000	
AB		0.0000000	1.0000	1	
AC		0.0000000	1.0000	1	
BC		-0.01553	0.1693	1	
ABC		0.0000000	1.0000	1	
AA		-0.02071	0.1927	1	
BB		0.01036	0.5008	1	
СС		0.01036	0.5008	1	
AAB		-0.03107	0.1179	0.3333	
ABB		0.0000000	1.0000	0.3333	
AAC		0.03107	0.1179	0.3333	
ACC		0.0000000	1.0000	0.3333	
BBC		-0.01553	0.4124	0.3333	
BCC		0.01553	0.4124	0.3333	
	_				
	R ²	0.6058			
	Adj R ²	-0.0250			
	Std Error	0.0363			
	F	0.9604			
	Sig F	0.5454			

Final Regression Model <u>DOE PRO XL > Analyze Design > Multiple Response Regression</u>

Y-hat Model					
		Mixing Time			
					, ive
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		19.827	0.0000		
А	Supplier	2.574	0.0000	1	Х
В	Temp	-1.250	0.0000	1	Х
С	Pressure	-0.54630	0.0000	1	Х
AA		-7.407	0.0000	1	X
BB		-0.65741	0.0000	1	Х
	_				
	R ²	0.9791			
	Adj R ²	0.9777			
	Std Error	0.6438			
	F	701.5622			
	Sig F	0.0000			

Factor	Name	Low	High	Exper
А	Supplier	1	3	2
В	Temp	100	200	150
С	Pressure	50	80	65

Multiple Response Prediction						
			99% Confide	ence Interval		
	Y-hat	S-hat	Lower Bound	Upper Bound		
Mixing Time	19.8272	0.5843	18.074	21.580		

hat Model		Mixing Time	•		ive
Factor	Name	Coeff	P(2 Tail)	Tol	Act
Const		0.58425	0.0000		
	R ² Adj R ² Std Error F Sig F F _{LOF} Sig F _{LOF}	0.0000 0.0000 0.0359 NA NA NA			
	Source	SS	df	MS	
	Regression	0.0	0	NA	

Y bar Marginal Means Plot of Mixing Time

KISS Guidelines for Choosing and Experimental Design

NOTE 1: Sample size (n_{reps}) is for 95% confidence in \hat{s} and 99.99% confidence in \hat{y} .

NOTE 2: $(n_{reps}/2)$ will provide 75% confidence in \hat{s} and 95% confidence in \hat{y} .

NOTE 3: The 12 Run Plackett-Burman or L12 is very sensitive to large numbers of interactions. If this is the case, you would be better off using the 16 Run Fractional Factorial or a smaller number of variables in 2 or more full factorial experiments.

NOTE 4: For more complete 2-level design options, see next page.

Three Level Screening Design – L₁₈

OBJECTIVE: To test an orthogonal subset of the full factorial.

ADVANTAGES: Can screen many factors with just a few runs. Can estimate all main effects and all quadratics independently, as well as the AB interaction. Can mix qualitative and quantitative factors. Can handle up to seven three level factors.

DISADVANTAGES: No direct modeling of interactions

					L ₁	₈ Desi	gn				
Run	1	2	3	4	5	6	7	8	y ₁ y ₄	ÿ	s
1	-1	-1	-1	-1	-1	-1	-1	-1			
2	-1	-1	0	0	0	0	0	0			
3	-1	-1	+1	+1	+1	+1	+1	+1			
4	-1	0	-1	-1	0	0	+1	+1			
5	-1	0	0	0	+1	+1	-1	-1			
6	-1	0	+1	+1	-1	-1	0	0			
7	-1	+1	-1	0	-1	+1	0	+1			
8	-1	+1	0	+1	0	-1	+1	-1			
9	-1	+1	+1	-1	+1	0	-1	0			
10	+1	-1	-1	+1	+1	0	0	-1			
11	+1	-1	0	-1	-1	+1	+1	0			
12	+1	-1	+1	0	0	-1	-1	+1			
13	+1	0	-1	0	+1	-1	+1	0			
14	+1	0	0	+1	-1	0	-1	+1			
15	+1	0	+1	-1	0	+1	0	-1			
16	+1	+1	-1	+1	0	+1	-1	0			
17	+1	+1	0	-1	+1	-1	0	+1			
18	+1	+1	+1	0	-1	0	+1	-1			

L₁₈ Screening Design Example

L₁₈ Screening Design Example (cont.)

DOE PRO XL > Analyze Design > Marginal Means Plot...

L₁₈ Screening Design Example (cont.)

DOE PRO XL > Analyze Design > Multiple Response Regression

Y-hat Model		Dispense Vol			
Factor	Name	Coeff	P(2 Tail)	Tol	Active
Const		97.650	0.0000		
Α	X1	-0.08056	0.2199	1	Х
В	X2	0.27500	0.0011	1	Х
С	X3	0.43958	0.0000	1	Х
D	X4	-0.74583	0.0000	1	Х
E	X5	0.69167	0.0000	1	Х
F	X6	0.64167	0.0000	1	Х
G	X7	0.08542	0.2874	1	Х
Н	X8	-0.57500	0.0000	1	Х
AB		0.78333	0.0000	1	Х
BB		0.62500	0.0000	1	Х
CC		-1.256	0.0000	1	Х
DD		2.175	0.0000	1	Х
EE		0.02500	0.8566	1	Х
FF		1.163	0.0000	1	Х
GG		2.556	0.0000	1	Х
HH		0.05000	0.7179	1	Х
	R ² Adj R ² Std Error F Sig F	0.9559 0.9431 0.5508 74.5448 0.0000			

				-
Factor	Name	LOW	High	Exper
Α	X1	-1	1	0
В	X2	-1	1	0
С	Х3	-1	1	0
D	X4	-1	1	0
E	X5	-1	1	0
F	X6	-1	1	0
G	X7	-1	1	0
Н	X8	-1	1	0

	Multipl	e Respons	e Prediction	
			99% Confide	nce Interval
	Y-hat	S-hat	Lower Bound	Upper Bound
Dispense Vol	97.6500	0.4533	96.290	99.010

	S-hat Model						
			Dispense Vol				
						live	
	Factor	Name	Coeff	P(2 Tail)	Tol	Act	
	Const		0.45331	0.1238			
С	Α	X1	0.28003	0.0523	1	Х	
С	в	X2	0.04298	0.3701	1	Х	
С	C	X3	-0.03638	0.4203	1	Х	
С	D	X4	-0.03054	0.4752	1	Х	
С	E	X5	0.09167	0.1903	1	Х	
С	F	X6	-0.07645	0.2253	1	Х	
С	G	X7	0.09846	0.1779	1	Х	
С	Н	X8	0.02019	0.6049	1	Х	
	AB		0.09812	0.1784	1	Х	
	BB		0.05088	0.4875	1	Х	
	CC		0.03490	0.6055	1	Х	
	DD		-0.14938	0.2015	1	Х	
	EE		0.00427	0.9445	1	Х	
	FF		0.08219	0.3418	1	Х	
	GG		0.02786	0.6705	1	Х	
	HH		-0.06678	0.4025	1	Х	
		R ²	0.9953				
		Adj R ²	0.9199				
		Std Error	0.0978				
		F	13.1950				
		Sig F	0.2134				

KISS Guidelines for Choosing and Experimental Design

NOTE 1: Sample size (n_{reps}) is for 95% confidence in \hat{a} and 99.99% confidence in \hat{y} NOTE 2: $(n_{reps}/2)$ will provide 75% confidence in \hat{a} and 95% confidence in \hat{y}

NOTE 3: The 12 Run Plackett-Burman or L12 is very sensitive to large numbers of interactions. If this is the case, you would be better off using the 16 Run Fractional Factorial or a smaller number of variables in 2 or more full factorial experiments.

NOTE 4: For more complete 2-level design options, see next page.

Response Surface Modeling Designs

OBJECTIVE: To test a <u>nearly orthogonal subset of the full factorial</u> in order to build a non-linear model for quantitative input factors (X's).

Box - Behnken Design Space

Central Composite Design (CCD) Space

Central Composite Face Design Space

Response Surface Modeling Designs Box - Behnken Designs

- **OBJECTIVE:** To test a nearly orthogonal subset of the full factorial in order to build a non-linear model for quantitative input factors (X's).
- **ADVANTAGES:** Can evaluate all main and all quadratic effects as well as all 2-way interaction effects. Much more efficient than the full factorial designs!
- **DISADVANTAGES:** Requires quantitative factors. Not available for 2 factors and too many runs for $k \ge 5$. Therefore, use only for 3 or 4 quantitative factors as shown below.

			4 fa	actor	ſS	
Run	Α	в	С	D	y ₁ y ₄	s
1	-	-	0	0		
2	-	+	0	0		
3	+	-	0	0		
4	+	+	0	0		
5	0	0	-	-		
6	0	0	-	+		
7	0	0	+	-		
8	0	0	+	+		
9	0	0	0	0		
10	-	0	0	-		
11	-	0	0	+		
12	+	0	0	-		
13	+	0	0	+		
14	0	-	-	0		
15	0	-	+	0		
16	0	+	-	0		
17	0	+	+	0		
18	0	0	0	0		
19	-	0	-	0		
20	-	0	+	0		
21	+	0	-	0		
22	+	0	+	0		
23	0	-	0	-		
24	0	-	0	+		
25	0	+	0	-		
26	0	+	0	+		
27	0	0	0	0		

Box – Behnken Example

Box Behnken

Example

R&D Laboratory

- Goal was to achieve Y = 1350
- 1 rep (although not ideal) was taken due to cost
- Most expensive factor was C
- To be competitive, highest setting for C is 45

2001	y		· ····	noopoi	IOC Duit
Factor	Α	В	С		
Row #	Α	В	С	Y1	Y bar
1	4.5	30	75	211	211
2	4.5	120	75	1332	1332
3	6.5	30	75	<mark>959</mark>	959
4	6.5	120	75	<mark>1163</mark>	1163
5	4.5	75	30	<mark>697</mark>	697
6	4.5	75	120	427	427
7	6.5	75	30	724	724
8	6.5	75	120	<mark>396 396 396 396 396 396 396 396 396 396 </mark>	396
9	5.5	30	30	<mark>783</mark>	783
10	5.5	30	120	275	275
11	5.5	120	30	<mark>779</mark>	779
12	5.5	120	120	1251	1251
13	5.5	75	75	1282	1282
14	5.5	75	75	<mark>1339</mark>	1339
15	5.5	75	75	1304	1304

Design Matrix with Response Data

First Regression Output

Y-hat Model		Signal			
Factor	Name	Coeff	P(2 Tail)	Tol	Active
A	A	1308.33 71.875	0.2085	1	X
В	В	287.13	0.0022	1	Х
С	С	-79.250	0.1724	1	Х
AB		-229.25	0.0226	1	Х
AC		-14.500	0.8450	1	
BC		245.00	0.0177	1	Х
AA		-301.54	0.0092	0.9890	Х
BB		-90.542	0.2716	0.9890	
CC		-445.79	0.0017	0.9890	X
	R ² Adj R ² Std Error F Sig F	0.9570 0.8795 140.8513 12.3576 0.0064			

Final Regression Output

Y-hat Model		Signal			
		Jightan			tive
Factor	Name	Coeff	P(2 Tail)	Tol	Ac
Const		1252.62	0.0000		
А	А	71.875	0.1798	1	Х
В	В	287.13	0.0006	1	Х
С	С	-79.250	0.1444	1	Х
AB		-229.25	0.0121	1	Х
BC		245.00	0.0088	1	Х
AA		-294.58	0.0042	0.9949	Х
CC		-438.83	0.0004	0.9949	Х
	R ²	0.9435			
	Adj R ²	0.8870			
	Std Error	136.4369			
	F	16.6944			
	Sig F	0.0007			

• Using Multiple Response Optimizer, is there a way to hit the target value (1350), while keeping factor C at or below 45?

Response Signal	Remove Constraint
Model Type Optimization Target Value Y-hat = I 1350	Settings To <u>W</u> orksheet <u>H</u> elp

- The team tried several confirmation tests, within the range of the experimental settings. Keeping C at 45, they confirmed that there was no way to hit their target value. Their predictions matched well with what DOE Pro predicted.
- The team then tried extrapolating with the settings for factor B. Since their prediction model worked well within their experimental range, they decided it was worth a shot to try something outside the range as suggested by their DOE model. Note that there is no guarantee that the model will extrapolate, so confirmation is especially critical!

Factor	Name	Low	High	Eter
А	А	4.5	6.5	5.23
В	В	30	120	143
С	С	30	120	45

Multiple Response Prediction									
00% Confidence Interval									
			99% Confide	ence Interval					
	Y-hat	S-hat	Lower Bound	Upper Bound					
Signal	1350.1306	136.4369	940.820	1759.441					

Response Surface Modeling Designs Central Composite Designs (CCD)

- **OBJECTIVE:** To test a nearly orthogonal subset of the full factorial in order to build a non-linear model for quantitative input factors (X's).
- **ADVANTAGES:** Can evaluate all main and all quadratic effects as well as selected interactions (2-way and higher). Can be run sequentially: the 2-level part first and then test for linearity. If linear, no need to go further. If not, must add on axial points.

DISADVANTAGES: Primarily for quantitative factors.

Central Composite Designs Suggested Values for α and # of Center Points

- Face-centered Design ($\alpha = 1$)
 - Hard limits (restrictions) on factor settings
 - Cannot take factor settings beyond ±1 (coded values)
 - Predictions made within the "cube"
 - Recommended number of center points = 2
 - Orthogonality is worse with more than 2 center points
- Spherical Design ($\alpha = \sqrt{k}$)
- Rotatable Design ($\alpha = (n_F)^{1/4}$)
 - k is the number of factors; n_F is the number of runs in the factorial part of the design
 - No hard limits (constraints) on factor settings
 - Able to go beyond ±1 coded settings
 - Predictions slightly beyond the "cube" (in case the optimum lies just outside)
 - Orthogonality improves with more center points; 3-6 is recommended

2 Factor - CCD Template from DOE PRO XL

	Run	pul	l back	stop	angle	Y1	Y2	Y3	Y4
Factorial	1	-	160	-	2				
	2	-	160	+	4				
	3	+	180	-	2				
	4	+	180	+	4				
Contor	5	0	170	0	3				
Center	6	0	170	0	3				
	7	-	160	0	3				
Avial	8	+	180	0	3				
Axiai	9	0	170	-	2				
	10	0	170	+	4				

• Collect data and complete the factorial portion of the CCD.

Factor	A	В	Distance							
Row #	pullback angle	stop angle	Y1	Y2		Y3		Y4	Y bar	S
1	160	2	27.5		27.5		27.5	27	27.375	0.25
2	160	4	47		47		48	48	47.5	0.57735
3	180	2	64.5		64		63.5	62	63.5	1.080123
4	180	4	77		74		75.5	75	75.375	1.25
5	170	3							#DIV/0!	#DIV/0!
6	170	3							#DIV/0!	#DIV/0!
7	160	3							#DIV/0!	#DIV/0!
8	180	3							#DIV/0!	#DIV/0!
9	170	2							#DIV/0!	#DIV/0!
10	170	4							#DIV/0!	#DIV/0!

• Select Analyze Design from DOE PRO XL with only this data and duplicate the regression output on the next page!

- Row five data at the centerpoints is: 57, 57.5, 57, 57!
- Did not confirm! We need to collect the remaining rows of the CCD design (the Center and Axial portions of the design)!

• Collect the remaining data and complete the CCD design.

Factor		A	В	Distance					
Row #		pullback angle	stop angle	Y1	Y2	Y3	Y4	Y bar	S
	1	160	2	27.5	27.5	27.5	27	27.375	0.25
	2	160	4	47	47	48	48	47.5	0.57735
	3	180	2	64.5	64	63.5	62	63.5	1.080123
	4	180	4	77	74	75.5	75	75.375	1.25
	5	170	3	57	57.5	57	57	57.125	0.25
	6	170	3	57.5	57	56.5	57	57	0.408248
	7	160	3	48	47	47	47	47.25	0.5
	8	180	3	73.5	75	73	74.5	74	0.912871
	9	170	2	43	42	42	42	42.25	0.5
	10	170	4	58	58	61	58.5	58.875	1.436141

 Select Analyze Design from DOE PRO XL with the complete data set and duplicate the regression output on the next page!

• One final regression to clean up the insignificant terms!

Y-hat Mode	el la										-	S-hat Model				
		Distance				Facto	r Name	Low	High	Exper				Distance	_	
					i <u>č</u>											<u>š</u>
Factor	Name	Coeff	P(2 Tail)	Tol	Act							Factor	Name	Coeff	P(2 Tail) Tol 🛱
Const		57.259	0.0000			A	pullback an	igle 160	180	170		Const		0.71647	0.0002	
А	pullback angle	15.125	0.0000	1	X	В	stop angl	e 2	4	3	C C	А	pullback angle	0.31927	0.0584	1 <mark>X</mark>
В	stop angle	8.104	0.0000	1	X						-		_			
AB		-2.063	0.0000	1	X						_		R ²	0.3783		
AA		3.170	0.0000	0.9722	Х		Μι	Itiple Response	Prediction				Adj R ²	0.3006		
BB		-6.893	0.0000	0.9722	X								Std Error	0.3544		
	_								99% Confi	idence Interval			F	4.8684		
	R ²	0.9924					Y-hat	S-hat	Lower Boun	d Upper Bound			Sig F	0.0584		
	Adj R ²	0.9912				Distanc	e 57.2589	0.7165	55.110	59.408			FLOF	0.2207		
	Std Error	1.3132		\square							•		Sig F _{LOF}	0.6528		
	F	883.4346	;													
	Sig F	0.0000											Source	SS	df	MS

• We now have a non-linear model for Y-hat and a potential linear model for S-hat! If the customer gives us a target, we now will be able to determine input settings to hit the target consistently! The target is 52 with a lower specification of 50 and an upper specification of 54. What are the input settings to hit this target consistently?

Multiple Response	Optimizer (St	ep 1 of 3)		>							
Multiple Response	Multiple Response Optimization Step #1: <u>O</u> K										
For each factor enter the low, high, and continuous information.											
Name	Low	High	<u>H</u> elp								
pullback angle	pullback angle 160 180 🗹 Continuous										
stop angle 2 4 Continuous											

Multiple Response (\times										
Multiple Response Op You may enable Cpk o USL blank, it will be co	Multiple Response Optimization Step #2 (Optional): You may enable Cpk optimization for each response and define the LSL and USL. If you leave LSL or USL blank, it will be considered a one sided limit.										
	<u>C</u> ancel										
Response	LSL	USL	S Estimate	<u>H</u> elp							
Distance	50	54	S Model (if Avail)	Cpk Enabled							

Multiple Response Optim	nizer (Step 3 of 3) - Co	onstraint Editor		\times
Current Constraints and A	nswers			
Distance: Max Cpk Weig	ght=50 RESULT = 1.252	(50 of 50)		^
Constraint Definitions Response	Distance		<u>R</u> emo <u>O</u> pt	ve Constraint imize Again
Cpk Max = 1	.251538147 ~	50 Veight	Setting	s To <u>W</u> orksheet
	<u>A</u> dd Constraint		<u>H</u> elp	<u>C</u> ancel
Optimal Input Settings				
pullback angle = 164.24228 stop angle = 4	487344			~ ~

Factor	Name	Low	High	Exper
A	pullback angle	160	180	164.2422849
В	stop angle	2	4	4

Multiple Response Prediction									
	99% Confidence Interval								
	Y-hat	S-hat	Lower Bound	Upper Bound					
Distance	52.0000	0.5326	50.402	53.598					

KISS Guidelines for Choosing an Experimental Design

NOTE 1: Sample size (n_{reps}) is for 95% confidence in \hat{s} and 99.99% confidence in \hat{y} .

NOTE 2: $(n_{reps}/2)$ will provide 75% confidence in \hat{s} and 95% confidence in \hat{y} .

NOTE 3: The 12 Run Plackett-Burman or L12 is very sensitive to large numbers of interactions. If this is the case, you would be better off using the 16 Run Fractional Factorial or a smaller number of variables in 2 or more full factorial experiments.

NOTE 4: For more complete 2-level design options, see next page.

Key Takeaways

• As a review techniques, stop the video and summarize the key learnings from this session. When you are finished, continue to the next page.

Key Takeaways

- Full Factorial designs are great for mixed factors (at least one qualitative input factor) when K (number of factors) is 3 or less!
- The L₁₈ is a great screening design for mixed factors and larger K!
- The marginal means plots are used extensively with the full factorial and L₁₈ design when some of the factors are qualitative.
- Models do not make sense for qualitative input factors.
- The Box-Behnken and CCD designs are more efficient than the full factorial designs. For quantitative input factors only (typically K = 5 or less, these designs are perfect for model building with considerable less resources!
- The CCD design can be run sequentially. Keep it simple statistically (KISS) stay linear (two-level input factors) until shown otherwise. The center section is the confirmation of the linear model. If it confirms, congrats, you are complete (resources savings)! If it does not confirm, collect the center and axial pieces. Combine with the factorial piece and build the non-linear model.
- DOE PRO XL is nice software that has good graphical and optimization tools!

Supplemental Material

- Suggested Reading:
 - Lean Six Sigma: A Tools Guide by Adams, Kiemele, Pollock and Quan (pp. 139 146)
 - Basic Statistics Tools for Continuous Improvement by Kiemele, Schmidt and Berdine, 4th edition (Chapter 8)
 - Design for Six Sigma: The Tool Guide for Practitioners by Reagan and Kiemele (section 7.9)
 - Understanding Industrial Designed Experiments by Schmidt and Launsby (chapter 2, 3, and 5)
 - Air Academy's app: Six Sigma Quick Tools

- SPC XL[™] software training tutorials:
 - <u>https://airacad.com/our-insights/training-videos/spc-xl/</u>
- The data files for this session can be downloaded from the site where you are accessing this course.

Additional Practice / Review Questions

- For each of the following scenarios, identify the design (and corresponding sample size) you would recommend:
 - You have just completed a screening experiment and determined there are three critical factors in a process under study. All of the factors are quantitative and you suspect nonlinearities and several significant two factor interactions. You'd like to be able to build a nonlinear model.
 - You are studying a fairly new injection molding process. You and your team have identified a total of 5 potentially important factors to study. The factors are: a) material vendor; b) holding time; c) holding pressure; d) gate size; and e) mold temperature. You'd like to determine which of these five factors has the most significant effect on percent shrinkage for further investigation.
 - You want to study three factors in a process to determine a good combination for giving optimum performance. One of the factors (brand) is qualitative, and the other two are quantitative (time and temperature). You suspect nonlinearities and interactions amongst the factors.
 - You want to study three input factors in a chemical process to optimize the input factors for best performance. All of the input factors are quantitative. You are not sure of nonlinearities for the ranges of the input factors selected. You do suspect interactions amongst the input factors.

We can help... Connect With Us

Remote Project Coaching

There are times when help outside your organization is needed. When that time comes, benefit from a partner that is experienced, tested, and trusted.

Expert coaching is one of the Top Five Best Practices for generating step change in project execution, as well as enhanced return on investment. We can work remotely with your organization to provide coaching support.

There's an app for that! Six Sigma Quick Tools

